Documentation Verification Report

FinPartOrd

📁 Source: Mathlib/Order/Category/FinPartOrd.lean

Statistics

MetricCount
DefinitionsFinPartOrd, mk, concreteCategory, dual, dualEquiv, hasForgetToFintype, hasForgetToPartOrd, instCoeSortType, instInhabited, instPartialOrderCarrier, isFintype, largeCategory, of, ofHom, toPartOrd
15
Theoremsmk_hom, mk_inv, comp_apply, dualEquiv_counitIso, dualEquiv_functor, dualEquiv_inverse, dualEquiv_unitIso, dual_map, hom_comp, hom_ext, hom_ext_iff, hom_hom_comp, hom_hom_id, hom_hom_ofHom, hom_id, hom_ofHom, id_apply, ofHom_hom, ofHom_hom_hom, FinPartOrd_dual_comp_forget_to_partOrd
20
Total35

FinPartOrd

Definitions

NameCategoryTheorems
concreteCategory 📖CompOp
8 mathmath: FinBoolAlg.forgetToFinPartOrdFaithful, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_carrier, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_isFintype, comp_apply, FinPartOrd_dual_comp_forget_to_partOrd, FinBoolAlg.hasForgetToFinPartOrd_forget₂_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_str, id_apply
dual 📖CompOp
6 mathmath: dualEquiv_functor, dualEquiv_unitIso, dualEquiv_counitIso, dual_map, dualEquiv_inverse, FinPartOrd_dual_comp_forget_to_partOrd
dualEquiv 📖CompOp
4 mathmath: dualEquiv_functor, dualEquiv_unitIso, dualEquiv_counitIso, dualEquiv_inverse
hasForgetToFintype 📖CompOp
hasForgetToPartOrd 📖CompOp
1 mathmath: FinPartOrd_dual_comp_forget_to_partOrd
instCoeSortType 📖CompOp
instInhabited 📖CompOp
instPartialOrderCarrier 📖CompOp
15 mathmath: dualEquiv_unitIso, FinBoolAlg.forgetToFinPartOrdFaithful, ofHom_hom_hom, dualEquiv_counitIso, dual_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_carrier, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_isFintype, comp_apply, Iso.mk_inv, FinPartOrd_dual_comp_forget_to_partOrd, FinBoolAlg.hasForgetToFinPartOrd_forget₂_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_str, Iso.mk_hom, id_apply, ofHom_hom
isFintype 📖CompOp
6 mathmath: ofHom_hom_hom, dual_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_isFintype, Iso.mk_inv, Iso.mk_hom, ofHom_hom
largeCategory 📖CompOp
19 mathmath: dualEquiv_functor, dualEquiv_unitIso, hom_hom_comp, FinBoolAlg.forgetToFinPartOrdFaithful, dualEquiv_counitIso, dual_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_carrier, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_isFintype, dualEquiv_inverse, comp_apply, Iso.mk_inv, hom_id, FinPartOrd_dual_comp_forget_to_partOrd, FinBoolAlg.hasForgetToFinPartOrd_forget₂_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_str, hom_comp, Iso.mk_hom, id_apply, hom_hom_id
of 📖CompOp
3 mathmath: hom_ofHom, FinBoolAlg.hasForgetToFinPartOrd_forget₂_map, hom_hom_ofHom
ofHom 📖CompOp
7 mathmath: hom_ofHom, ofHom_hom_hom, dual_map, Iso.mk_inv, Iso.mk_hom, ofHom_hom, hom_hom_ofHom
toPartOrd 📖CompOp
22 mathmath: dualEquiv_unitIso, hom_ofHom, hom_hom_comp, FinBoolAlg.forgetToFinPartOrdFaithful, ofHom_hom_hom, dualEquiv_counitIso, dual_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_carrier, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_isFintype, comp_apply, Iso.mk_inv, hom_id, FinPartOrd_dual_comp_forget_to_partOrd, FinBoolAlg.hasForgetToFinPartOrd_forget₂_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_str, hom_comp, Iso.mk_hom, id_apply, ofHom_hom, hom_hom_id, hom_hom_ofHom, hom_ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
comp_apply 📖mathematicalDFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinPartOrd
largeCategory
OrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
instPartialOrderCarrier
OrderHom.instFunLike
concreteCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.comp_apply
dualEquiv_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
FinPartOrd
largeCategory
dualEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
dual
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
OrderIso.dualDual
PartOrd.carrier
toPartOrd
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderCarrier
dualEquiv_functor 📖mathematicalCategoryTheory.Equivalence.functor
FinPartOrd
largeCategory
dualEquiv
dual
dualEquiv_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
FinPartOrd
largeCategory
dualEquiv
dual
dualEquiv_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
FinPartOrd
largeCategory
dualEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
dual
CategoryTheory.Functor.obj
OrderIso.dualDual
PartOrd.carrier
toPartOrd
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderCarrier
dual_map 📖mathematicalCategoryTheory.Functor.map
FinPartOrd
largeCategory
dual
ofHom
OrderDual
PartOrd.carrier
toPartOrd
OrderDual.instPartialOrder
instPartialOrderCarrier
OrderDual.fintype
isFintype
DFunLike.coe
Equiv
OrderHom
PartialOrder.toPreorder
PartOrd.str
OrderDual.instPreorder
EquivLike.toFunLike
Equiv.instEquivLike
OrderHom.dual
PartOrd.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
PartOrd
PartOrd.instCategory
hom_comp 📖mathematicalPartOrd.Hom.hom
toPartOrd
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
largeCategory
OrderHom.comp
PartOrd.carrier
PartialOrder.toPreorder
PartOrd.str
hom_hom_comp
hom_ext 📖PartOrd.Hom.hom
toPartOrd
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory
CategoryTheory.InducedCategory.hom_ext
CategoryTheory.ConcreteCategory.ext
hom_ext_iff 📖mathematicalPartOrd.Hom.hom
toPartOrd
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory
hom_ext
hom_hom_comp 📖mathematicalPartOrd.Hom.hom
toPartOrd
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
largeCategory
OrderHom.comp
PartOrd.carrier
PartialOrder.toPreorder
PartOrd.str
hom_hom_id 📖mathematicalPartOrd.Hom.hom
toPartOrd
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
largeCategory
OrderHom.id
PartOrd.carrier
PartialOrder.toPreorder
PartOrd.str
hom_hom_ofHom 📖mathematicalPartOrd.Hom.hom
toPartOrd
of
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory
ofHom
hom_id 📖mathematicalPartOrd.Hom.hom
toPartOrd
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
largeCategory
OrderHom.id
PartOrd.carrier
PartialOrder.toPreorder
PartOrd.str
hom_hom_id
hom_ofHom 📖mathematicalPartOrd.Hom.hom
toPartOrd
of
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory
ofHom
hom_hom_ofHom
id_apply 📖mathematicalDFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinPartOrd
largeCategory
OrderHom
PartOrd.carrier
toPartOrd
PartialOrder.toPreorder
instPartialOrderCarrier
OrderHom.instFunLike
concreteCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.id_apply
ofHom_hom 📖mathematicalofHom
PartOrd.carrier
toPartOrd
instPartialOrderCarrier
isFintype
PartOrd.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory
ofHom_hom_hom
ofHom_hom_hom 📖mathematicalofHom
PartOrd.carrier
toPartOrd
instPartialOrderCarrier
isFintype
PartOrd.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
FinPartOrd
PartOrd
PartOrd.instCategory

FinPartOrd.Iso

Definitions

NameCategoryTheorems
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom 📖mathematicalCategoryTheory.Iso.hom
FinPartOrd
FinPartOrd.largeCategory
FinPartOrd.ofHom
PartOrd.carrier
PartOrd.str
FinPartOrd.isFintype
OrderHomClass.toOrderHom
OrderIso
FinPartOrd.toPartOrd
Preorder.toLE
PartialOrder.toPreorder
FinPartOrd.instPartialOrderCarrier
instFunLikeOrderIso
mk_inv 📖mathematicalCategoryTheory.Iso.inv
FinPartOrd
FinPartOrd.largeCategory
FinPartOrd.ofHom
PartOrd.carrier
PartOrd.str
FinPartOrd.isFintype
OrderHomClass.toOrderHom
OrderIso
FinPartOrd.toPartOrd
Preorder.toLE
PartialOrder.toPreorder
FinPartOrd.instPartialOrderCarrier
instFunLikeOrderIso
OrderIso.symm

(root)

Definitions

NameCategoryTheorems
FinPartOrd 📖CompData
24 mathmath: FinPartOrd.dualEquiv_functor, FinPartOrd.dualEquiv_unitIso, FinPartOrd.hom_ofHom, FinPartOrd.hom_hom_comp, FinBoolAlg.forgetToFinPartOrdFaithful, FinPartOrd.ofHom_hom_hom, FinPartOrd.dualEquiv_counitIso, FinPartOrd.dual_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_carrier, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_isFintype, FinPartOrd.dualEquiv_inverse, FinPartOrd.comp_apply, FinPartOrd.Iso.mk_inv, FinPartOrd.hom_id, FinPartOrd_dual_comp_forget_to_partOrd, FinBoolAlg.hasForgetToFinPartOrd_forget₂_map, FinBoolAlg.hasForgetToFinPartOrd_forget₂_obj_str, FinPartOrd.hom_comp, FinPartOrd.Iso.mk_hom, FinPartOrd.id_apply, FinPartOrd.ofHom_hom, FinPartOrd.hom_hom_id, FinPartOrd.hom_hom_ofHom, FinPartOrd.hom_ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
FinPartOrd_dual_comp_forget_to_partOrd 📖mathematicalCategoryTheory.Functor.comp
FinPartOrd
FinPartOrd.largeCategory
PartOrd
PartOrd.instCategory
FinPartOrd.dual
CategoryTheory.forget₂
OrderHom
PartOrd.carrier
FinPartOrd.toPartOrd
PartialOrder.toPreorder
FinPartOrd.instPartialOrderCarrier
OrderHom.instFunLike
FinPartOrd.concreteCategory
PartOrd.str
PartOrd.instConcreteCategoryOrderHomCarrier
FinPartOrd.hasForgetToPartOrd
PartOrd.dual

---

← Back to Index