Documentation Verification Report

Lat

πŸ“ Source: Mathlib/Order/Category/Lat.lean

Statistics

MetricCount
DefinitionsLat, hom, hom, hom', mk, carrier, dual, dualEquiv, hasForgetToPartOrd, instCategory, instCoeSortType, instConcreteCategoryLatticeHomCarrier, of, ofHom, str
15
Theoremsext, ext_iff, mk_hom, mk_inv, coe_comp, coe_id, coe_of, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, Lat_dual_comp_forget_to_partOrd
27
Total42

Lat

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
44 mathmath: ext_iff, BddLat.hom_comp, dual_map, coe_id, hom_comp, forget_map, bddLat_dual_comp_forget_to_lat, coe_of, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, comp_apply, distLat_dual_comp_forget_to_Lat, BddDistLat.coe_toBddLat, Iso.mk_inv, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, BddLat.coe_of, bddLat_dual_comp_forget_to_semilatSupCat, ofHom_apply, bddLat_dual_comp_forget_to_semilatInfCat, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, hom_id, Lat_dual_comp_forget_to_partOrd, BddLat.Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, BddLat.coe_forget_to_semilatSup, hom_inv_apply, BddLat.comp_apply, SimplexCategory.toCat_obj, id_apply, BddLat.id_apply, BddLat.coe_forget_to_bddOrd, BddLat.coe_forget_to_semilatInf, inv_hom_apply, Iso.mk_hom, BddLat.ext_iff, BddLat.hom_id, linOrd_dual_comp_forget_to_Lat, SimplexCategory.toCat_map, BddLat.dual_map, ofHom_hom, coe_comp, BddLat.Iso.mk_inv
dual πŸ“–CompOp
7 mathmath: dual_map, bddLat_dual_comp_forget_to_lat, dualEquiv_functor, distLat_dual_comp_forget_to_Lat, dualEquiv_inverse, Lat_dual_comp_forget_to_partOrd, linOrd_dual_comp_forget_to_Lat
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_functor, dualEquiv_inverse
hasForgetToPartOrd πŸ“–CompOp
4 mathmath: BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, Lat_dual_comp_forget_to_partOrd, SimplexCategory.toCat_obj, SimplexCategory.toCat_map
instCategory πŸ“–CompOp
31 mathmath: ext_iff, BddLat.hom_comp, dual_map, coe_id, hom_comp, forget_map, bddLat_dual_comp_forget_to_lat, comp_apply, dualEquiv_functor, distLat_dual_comp_forget_to_Lat, Iso.mk_inv, ofHom_apply, dualEquiv_inverse, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, hom_id, Lat_dual_comp_forget_to_partOrd, hom_inv_apply, BddLat.comp_apply, SimplexCategory.toCat_obj, id_apply, BddLat.id_apply, ofHom_comp, inv_hom_apply, Iso.mk_hom, BddLat.hom_id, linOrd_dual_comp_forget_to_Lat, SimplexCategory.toCat_map, ofHom_id, coe_comp
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryLatticeHomCarrier πŸ“–CompOp
20 mathmath: ext_iff, coe_id, forget_map, bddLat_dual_comp_forget_to_lat, comp_apply, distLat_dual_comp_forget_to_Lat, ofHom_apply, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, Lat_dual_comp_forget_to_partOrd, hom_inv_apply, BddLat.comp_apply, SimplexCategory.toCat_obj, id_apply, BddLat.id_apply, inv_hom_apply, linOrd_dual_comp_forget_to_Lat, SimplexCategory.toCat_map, coe_comp
of πŸ“–CompOp
5 mathmath: coe_of, ofHom_apply, hom_ofHom, ofHom_comp, ofHom_id
ofHom πŸ“–CompOp
8 mathmath: dual_map, Iso.mk_inv, ofHom_apply, hom_ofHom, ofHom_comp, Iso.mk_hom, ofHom_hom, ofHom_id
str πŸ“–CompOp
41 mathmath: ext_iff, BddLat.hom_comp, dual_map, coe_id, hom_comp, forget_map, bddLat_dual_comp_forget_to_lat, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, comp_apply, distLat_dual_comp_forget_to_Lat, Iso.mk_inv, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, ofHom_apply, bddLat_dual_comp_forget_to_semilatInfCat, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, hom_id, Lat_dual_comp_forget_to_partOrd, BddLat.Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, BddLat.coe_forget_to_semilatSup, hom_inv_apply, BddLat.comp_apply, SimplexCategory.toCat_obj, id_apply, BddLat.id_apply, BddLat.coe_forget_to_bddOrd, BddLat.coe_forget_to_semilatInf, inv_hom_apply, Iso.mk_hom, BddLat.ext_iff, BddLat.hom_id, linOrd_dual_comp_forget_to_Lat, SimplexCategory.toCat_map, BddLat.dual_map, ofHom_hom, coe_comp, BddLat.Iso.mk_inv

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Lat
instCategory
LatticeHom
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Lat
instCategory
LatticeHom
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Lat
instCategory
LatticeHom
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
Lat
instCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
Lat
instCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Lat
instCategory
dual
ofHom
OrderDual
carrier
OrderDual.instLattice
str
DFunLike.coe
Equiv
LatticeHom
EquivLike.toFunLike
Equiv.instEquivLike
LatticeHom.dual
Hom.hom
β€”β€”
ext πŸ“–β€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Lat
instCategory
LatticeHom
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Lat
instCategory
LatticeHom
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
β€”ext
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Lat
instCategory
CategoryTheory.types
CategoryTheory.forget
LatticeHom
carrier
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
Lat
CategoryTheory.Category.toCategoryStruct
instCategory
LatticeHom.comp
carrier
str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
Lat
CategoryTheory.Category.toCategoryStruct
instCategory
LatticeHom.id
carrier
str
β€”β€”
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Lat
instCategory
LatticeHom
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Lat
instCategory
LatticeHom
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Lat
instCategory
LatticeHom
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
Lat
instCategory
LatticeHom
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
LatticeHom.comp
CategoryTheory.CategoryStruct.comp
Lat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
str
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
LatticeHom.id
CategoryTheory.CategoryStruct.id
Lat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

Lat.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
8 mathmath: BddLat.hom_comp, Lat.hom_ext_iff, Lat.dual_map, Lat.hom_comp, Lat.hom_ofHom, Lat.hom_id, BddLat.hom_id, Lat.ofHom_hom
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

Lat.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

Lat.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Lat
Lat.instCategory
Lat.ofHom
Lat.carrier
Lat.str
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instFunLikeOrderIso
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Lat
Lat.instCategory
Lat.ofHom
Lat.carrier
Lat.str
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instFunLikeOrderIso
OrderIso.symm
β€”β€”

(root)

Definitions

NameCategoryTheorems
Lat πŸ“–CompData
31 mathmath: Lat.ext_iff, BddLat.hom_comp, Lat.dual_map, Lat.coe_id, Lat.hom_comp, Lat.forget_map, bddLat_dual_comp_forget_to_lat, Lat.comp_apply, Lat.dualEquiv_functor, distLat_dual_comp_forget_to_Lat, Lat.Iso.mk_inv, Lat.ofHom_apply, Lat.dualEquiv_inverse, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, Lat.hom_id, Lat_dual_comp_forget_to_partOrd, Lat.hom_inv_apply, BddLat.comp_apply, SimplexCategory.toCat_obj, Lat.id_apply, BddLat.id_apply, Lat.ofHom_comp, Lat.inv_hom_apply, Lat.Iso.mk_hom, BddLat.hom_id, linOrd_dual_comp_forget_to_Lat, SimplexCategory.toCat_map, Lat.ofHom_id, Lat.coe_comp

Theorems

NameKindAssumesProvesValidatesDepends On
Lat_dual_comp_forget_to_partOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
Lat
Lat.instCategory
PartOrd
PartOrd.instCategory
Lat.dual
CategoryTheory.forgetβ‚‚
LatticeHom
Lat.carrier
Lat.str
LatticeHom.instFunLike
Lat.instConcreteCategoryLatticeHomCarrier
OrderHom
PartOrd.carrier
PartialOrder.toPreorder
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
Lat.hasForgetToPartOrd
PartOrd.dual
β€”β€”

---

← Back to Index