Documentation Verification Report

NonemptyFinLinOrd

πŸ“ Source: Mathlib/Order/Category/NonemptyFinLinOrd.lean

Statistics

MetricCount
Definitionshom_succ, NonemptyFinLinOrd, mk, dual, dualEquiv, fintype, hasForgetToFinPartOrd, hasForgetToLinOrd, instBoundedOrderCarrier, instCoeSortType, instConcreteCategoryOrderHomCarrier, instInhabited, instLargeCategory, of, ofHom, toLinOrd, nonemptyFinLinOrdDualCompForgetToFinPartOrd
17
Theoremsmk_hom, mk_inv, coe_of, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, epi_iff_surjective, hom_comp, hom_ext, hom_ext_iff, hom_hom_comp, hom_hom_id, hom_hom_ofHom, hom_id, hom_ofHom, id_apply, instHasStrongEpiMonoFactorisations, instSplitEpiCategory, mono_iff_injective, nonempty, ofHom_hom, nonemptyFinLinOrd_dual_comp_forget_to_linOrd
23
Total40

Fin

Definitions

NameCategoryTheorems
hom_succ πŸ“–CompOpβ€”

NonemptyFinLinOrd

Definitions

NameCategoryTheorems
dual πŸ“–CompOp
4 mathmath: nonemptyFinLinOrd_dual_comp_forget_to_linOrd, dual_map, dualEquiv_inverse, dualEquiv_functor
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_inverse, dualEquiv_functor
fintype πŸ“–CompOp
4 mathmath: Iso.mk_inv, ofHom_hom, dual_map, Iso.mk_hom
hasForgetToFinPartOrd πŸ“–CompOpβ€”
hasForgetToLinOrd πŸ“–CompOp
3 mathmath: nonemptyFinLinOrd_dual_comp_forget_to_linOrd, SimplexCategory.toCat_obj, SimplexCategory.toCat_map
instBoundedOrderCarrier πŸ“–CompOpβ€”
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryOrderHomCarrier πŸ“–CompOp
7 mathmath: epi_iff_surjective, nonemptyFinLinOrd_dual_comp_forget_to_linOrd, id_apply, comp_apply, SimplexCategory.toCat_obj, SimplexCategory.toCat_map, mono_iff_injective
instInhabited πŸ“–CompOpβ€”
instLargeCategory πŸ“–CompOp
26 mathmath: instSplitEpiCategory, SimplexCategory.SkeletalFunctor.instEssSurjNonemptyFinLinOrdSkeletalFunctor, epi_iff_surjective, hom_comp, SimplexCategory.isSkeletonOf, Iso.mk_inv, nonemptyFinLinOrd_dual_comp_forget_to_linOrd, SimplexCategory.SkeletalFunctor.isEquivalence, hom_hom_id, dual_map, id_apply, instHasStrongEpiMonoFactorisations, comp_apply, dualEquiv_inverse, hom_hom_comp, SimplexCategory.toCat_obj, dualEquiv_functor, SimplexCategory.skeletalFunctor_obj, SimplexCategory.SkeletalFunctor.instFaithfulNonemptyFinLinOrdSkeletalFunctor, SimplexCategory.skeletalFunctor_map, SimplexCategory.skeletalFunctor.coe_map, SimplexCategory.toCat_map, mono_iff_injective, SimplexCategory.SkeletalFunctor.instFullNonemptyFinLinOrdSkeletalFunctor, Iso.mk_hom, hom_id
of πŸ“–CompOp
6 mathmath: coe_of, hom_hom_ofHom, SimplexCategory.toCat_obj, SimplexCategory.skeletalFunctor_obj, SimplexCategory.toCat_map, hom_ofHom
ofHom πŸ“–CompOp
8 mathmath: hom_hom_ofHom, Iso.mk_inv, ofHom_hom, dual_map, SimplexCategory.skeletalFunctor_map, SimplexCategory.toCat_map, Iso.mk_hom, hom_ofHom
toLinOrd πŸ“–CompOp
21 mathmath: coe_of, epi_iff_surjective, hom_hom_ofHom, hom_comp, Iso.mk_inv, nonemptyFinLinOrd_dual_comp_forget_to_linOrd, hom_ext_iff, ofHom_hom, hom_hom_id, dual_map, nonempty, id_apply, comp_apply, hom_hom_comp, SimplexCategory.toCat_obj, SimplexCategory.skeletalFunctor.coe_map, SimplexCategory.toCat_map, mono_iff_injective, Iso.mk_hom, hom_id, hom_ofHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_of πŸ“–mathematicalβ€”LinOrd.carrier
toLinOrd
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
NonemptyFinLinOrd
instLargeCategory
OrderHom
LinOrd.carrier
toLinOrd
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.comp_apply
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
NonemptyFinLinOrd
instLargeCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
NonemptyFinLinOrd
instLargeCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
NonemptyFinLinOrd
instLargeCategory
dual
ofHom
OrderDual
LinOrd.carrier
toLinOrd
OrderDual.instLinearOrder
LinOrd.str
OrderDual.fintype
fintype
DFunLike.coe
Equiv
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
OrderDual.instPreorder
EquivLike.toFunLike
Equiv.instEquivLike
OrderHom.dual
LinOrd.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
LinOrd
LinOrd.instCategory
β€”β€”
epi_iff_surjective πŸ“–mathematicalβ€”CategoryTheory.Epi
NonemptyFinLinOrd
instLargeCategory
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
OrderHom
LinOrd.carrier
toLinOrd
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
β€”Mathlib.Tactic.Push.not_forall_eq
ULift.instNonempty_mathlib
nonempty
lt_of_le_of_lt
le_refl
LE.le.trans
CategoryTheory.cancel_epi
hom_ext
OrderHom.ext
le_of_lt
eq_of_le_of_not_lt
CategoryTheory.ConcreteCategory.hom_ofHom
CategoryTheory.ConcreteCategory.epi_of_surjective
hom_comp πŸ“–mathematicalβ€”LinOrd.Hom.hom
toLinOrd
CategoryTheory.InducedCategory.Hom.hom
NonemptyFinLinOrd
LinOrd
LinOrd.instCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instLargeCategory
OrderHom.comp
LinOrd.carrier
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
β€”hom_hom_comp
hom_ext πŸ“–β€”LinOrd.Hom.hom
toLinOrd
CategoryTheory.InducedCategory.Hom.hom
NonemptyFinLinOrd
LinOrd
LinOrd.instCategory
β€”β€”CategoryTheory.InducedCategory.hom_ext
CategoryTheory.ConcreteCategory.ext
hom_ext_iff πŸ“–mathematicalβ€”LinOrd.Hom.hom
toLinOrd
CategoryTheory.InducedCategory.Hom.hom
NonemptyFinLinOrd
LinOrd
LinOrd.instCategory
β€”hom_ext
hom_hom_comp πŸ“–mathematicalβ€”LinOrd.Hom.hom
toLinOrd
CategoryTheory.InducedCategory.Hom.hom
NonemptyFinLinOrd
LinOrd
LinOrd.instCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
instLargeCategory
OrderHom.comp
LinOrd.carrier
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
β€”β€”
hom_hom_id πŸ“–mathematicalβ€”LinOrd.Hom.hom
toLinOrd
CategoryTheory.InducedCategory.Hom.hom
NonemptyFinLinOrd
LinOrd
LinOrd.instCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instLargeCategory
OrderHom.id
LinOrd.carrier
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
β€”β€”
hom_hom_ofHom πŸ“–mathematicalβ€”LinOrd.Hom.hom
toLinOrd
of
CategoryTheory.InducedCategory.Hom.hom
NonemptyFinLinOrd
LinOrd
LinOrd.instCategory
ofHom
β€”β€”
hom_id πŸ“–mathematicalβ€”LinOrd.Hom.hom
toLinOrd
CategoryTheory.InducedCategory.Hom.hom
NonemptyFinLinOrd
LinOrd
LinOrd.instCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instLargeCategory
OrderHom.id
LinOrd.carrier
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
β€”hom_hom_id
hom_ofHom πŸ“–mathematicalβ€”LinOrd.Hom.hom
toLinOrd
of
CategoryTheory.InducedCategory.Hom.hom
NonemptyFinLinOrd
LinOrd
LinOrd.instCategory
ofHom
β€”hom_hom_ofHom
id_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
NonemptyFinLinOrd
instLargeCategory
OrderHom
LinOrd.carrier
toLinOrd
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.id_apply
instHasStrongEpiMonoFactorisations πŸ“–mathematicalβ€”CategoryTheory.Limits.HasStrongEpiMonoFactorisations
NonemptyFinLinOrd
instLargeCategory
β€”Set.instNonemptyElemImage
Set.instNonemptyTop
nonempty
OrderHom.monotone
CategoryTheory.ConcreteCategory.mono_of_injective
CategoryTheory.strongEpi_of_epi
CategoryTheory.strongEpiCategory_of_regularEpiCategory
CategoryTheory.regularEpiCategoryOfSplitEpiCategory
instSplitEpiCategory
epi_iff_surjective
instSplitEpiCategory πŸ“–mathematicalβ€”CategoryTheory.SplitEpiCategory
NonemptyFinLinOrd
instLargeCategory
β€”epi_iff_surjective
CategoryTheory.IsSplitEpi.mk'
nonempty
Mathlib.Tactic.Contrapose.contrapose₁
OrderHom.monotone
le_of_lt
lt_of_le_of_ne
hom_ext
OrderHom.ext
mono_iff_injective πŸ“–mathematicalβ€”CategoryTheory.Mono
NonemptyFinLinOrd
instLargeCategory
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
OrderHom
LinOrd.carrier
toLinOrd
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
OrderHom.instFunLike
instConcreteCategoryOrderHomCarrier
β€”ULift.instNonempty_mathlib
nonempty
le_refl
hom_ext
OrderHom.ext
CategoryTheory.cancel_mono
CategoryTheory.ConcreteCategory.mono_of_injective
nonempty πŸ“–mathematicalβ€”LinOrd.carrier
toLinOrd
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
LinOrd.carrier
toLinOrd
nonempty
LinOrd.str
fintype
LinOrd.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
NonemptyFinLinOrd
LinOrd
LinOrd.instCategory
β€”nonempty

NonemptyFinLinOrd.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
NonemptyFinLinOrd.ofHom
LinOrd.carrier
NonemptyFinLinOrd.nonempty
LinOrd.str
NonemptyFinLinOrd.fintype
OrderHomClass.toOrderHom
OrderIso
NonemptyFinLinOrd.toLinOrd
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instFunLikeOrderIso
β€”NonemptyFinLinOrd.nonempty
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
NonemptyFinLinOrd.ofHom
LinOrd.carrier
NonemptyFinLinOrd.nonempty
LinOrd.str
NonemptyFinLinOrd.fintype
OrderHomClass.toOrderHom
OrderIso
NonemptyFinLinOrd.toLinOrd
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instFunLikeOrderIso
OrderIso.symm
β€”NonemptyFinLinOrd.nonempty

(root)

Definitions

NameCategoryTheorems
NonemptyFinLinOrd πŸ“–CompData
30 mathmath: NonemptyFinLinOrd.instSplitEpiCategory, SimplexCategory.SkeletalFunctor.instEssSurjNonemptyFinLinOrdSkeletalFunctor, NonemptyFinLinOrd.epi_iff_surjective, NonemptyFinLinOrd.hom_hom_ofHom, NonemptyFinLinOrd.hom_comp, SimplexCategory.isSkeletonOf, NonemptyFinLinOrd.Iso.mk_inv, nonemptyFinLinOrd_dual_comp_forget_to_linOrd, NonemptyFinLinOrd.hom_ext_iff, SimplexCategory.SkeletalFunctor.isEquivalence, NonemptyFinLinOrd.ofHom_hom, NonemptyFinLinOrd.hom_hom_id, NonemptyFinLinOrd.dual_map, NonemptyFinLinOrd.id_apply, NonemptyFinLinOrd.instHasStrongEpiMonoFactorisations, NonemptyFinLinOrd.comp_apply, NonemptyFinLinOrd.dualEquiv_inverse, NonemptyFinLinOrd.hom_hom_comp, SimplexCategory.toCat_obj, NonemptyFinLinOrd.dualEquiv_functor, SimplexCategory.skeletalFunctor_obj, SimplexCategory.SkeletalFunctor.instFaithfulNonemptyFinLinOrdSkeletalFunctor, SimplexCategory.skeletalFunctor_map, SimplexCategory.skeletalFunctor.coe_map, SimplexCategory.toCat_map, NonemptyFinLinOrd.mono_iff_injective, SimplexCategory.SkeletalFunctor.instFullNonemptyFinLinOrdSkeletalFunctor, NonemptyFinLinOrd.Iso.mk_hom, NonemptyFinLinOrd.hom_id, NonemptyFinLinOrd.hom_ofHom
nonemptyFinLinOrdDualCompForgetToFinPartOrd πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
nonemptyFinLinOrd_dual_comp_forget_to_linOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
LinOrd
LinOrd.instCategory
NonemptyFinLinOrd.dual
CategoryTheory.forgetβ‚‚
OrderHom
LinOrd.carrier
NonemptyFinLinOrd.toLinOrd
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
OrderHom.instFunLike
NonemptyFinLinOrd.instConcreteCategoryOrderHomCarrier
LinOrd.instConcreteCategoryOrderHomCarrier
NonemptyFinLinOrd.hasForgetToLinOrd
LinOrd.dual
β€”β€”

---

← Back to Index