Circular
📁 Source: Mathlib/Order/Circular.lean
Statistics
Btw
Definitions
Btw.btw
Theorems
CircularOrder
Definitions
| Name | Category | Theorems |
|---|---|---|
toCircularPartialOrder 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
btw_total 📖 | mathematical | — | Btw.btwCircularPreorder.toBtwCircularPartialOrder.toCircularPreordertoCircularPartialOrder | — | — |
CircularPartialOrder
Definitions
| Name | Category | Theorems |
|---|---|---|
toCircularPreorder 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
btw_antisymm 📖 | — | Btw.btwCircularPreorder.toBtwtoCircularPreorder | — | — | — |
CircularPreorder
Definitions
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
btw_cyclic_left 📖 | — | Btw.btwtoBtw | — | — | — |
btw_refl 📖 | mathematical | — | Btw.btwtoBtw | — | — |
sbtw_iff_btw_not_btw 📖 | mathematical | — | SBtw.sbtwtoSBtwBtw.btwtoBtw | — | — |
sbtw_trans_left 📖 | — | SBtw.sbtwtoSBtw | — | — | — |
LE
Definitions
| Name | Category | Theorems |
|---|---|---|
toBtw 📖 | CompOp |
LT
Definitions
| Name | Category | Theorems |
|---|---|---|
toSBtw 📖 | CompOp |
LinearOrder
Definitions
| Name | Category | Theorems |
|---|---|---|
toCircularOrder 📖 | CompOp | — |
OrderDual
Definitions
| Name | Category | Theorems |
|---|---|---|
btw 📖 | CompOp | — |
circularPartialOrder 📖 | CompOp | — |
circularPreorder 📖 | CompOp | — |
instCircularOrder 📖 | CompOp | — |
sbtw 📖 | CompOp | — |
PartialOrder
Definitions
| Name | Category | Theorems |
|---|---|---|
toCircularPartialOrder 📖 | CompOp | — |
Preorder
Definitions
| Name | Category | Theorems |
|---|---|---|
toCircularPreorder 📖 | CompOp | — |
SBtw
Definitions
| Name | Category | Theorems |
|---|---|---|
sbtw 📖 | MathDef | 17 mathmath:sbtw_irrefl_right, not_sbtw_of_btw, sbtw_iff_btw_not_btw, sbtw_cyclic, Fin.sbtw_iff, btw_iff_not_sbtw, sbtw_irrefl_left_right, sbtw_iff, sbtw_of_btw_not_btw, sbtw_irrefl, Set.mem_cIoo, Btw.btw.sbtw_of_not_btw, CircularPreorder.sbtw_iff_btw_not_btw, sbtw_irrefl_left, Btw.btw.not_sbtw, sbtw_iff_not_btw, Int.sbtw_iff |
SBtw.sbtw
Theorems
Set
Definitions
| Name | Category | Theorems |
|---|---|---|
cIcc 📖 | CompOp | |
cIoo 📖 | CompOp |
Theorems
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
Btw 📖 | CompData | — |
CircularOrder 📖 | CompData | — |
CircularPartialOrder 📖 | CompData | — |
CircularPreorder 📖 | CompData | — |
SBtw 📖 | CompData | — |
Theorems
---