Documentation Verification Report

Circular

📁 Source: Mathlib/Order/Circular.lean

Statistics

MetricCount
DefinitionsBtw, btw, CircularOrder, toCircularPartialOrder, CircularPartialOrder, toCircularPreorder, CircularPreorder, toBtw, toSBtw, toBtw, toSBtw, toCircularOrder, btw, circularPartialOrder, circularPreorder, instCircularOrder, sbtw, toCircularPartialOrder, toCircularPreorder, SBtw, sbtw, cIcc, cIoo
23
Theoremsantisymm, cyclic_left, cyclic_right, not_sbtw, sbtw_of_not_btw, btw_total, btw_antisymm, btw_cyclic_left, btw_refl, sbtw_iff_btw_not_btw, sbtw_trans_left, btw, cyclic_left, cyclic_right, not_btw, not_sbtw, trans_left, trans_right, compl_cIcc, compl_cIoo, left_mem_cIcc, mem_cIcc, mem_cIoo, right_mem_cIcc, btw_cyclic, btw_cyclic_right, btw_iff, btw_iff_not_sbtw, btw_of_sbtw, btw_refl_left, btw_refl_left_right, btw_refl_right, btw_rfl, btw_rfl_left, btw_rfl_left_right, btw_rfl_right, not_btw_of_sbtw, not_sbtw_of_btw, sbtw_asymm, sbtw_cyclic, sbtw_cyclic_left, sbtw_cyclic_right, sbtw_iff, sbtw_iff_btw_not_btw, sbtw_iff_not_btw, sbtw_irrefl, sbtw_irrefl_left, sbtw_irrefl_left_right, sbtw_irrefl_right, sbtw_of_btw_not_btw, sbtw_trans_right
51
Total74

Btw

Definitions

NameCategoryTheorems
btw 📖MathDef
24 mathmath: Set.mem_cIcc, btw_of_sbtw, sbtw_iff_btw_not_btw, not_btw_of_sbtw, btw_refl_left, btw_rfl_left_right, btw_iff_not_sbtw, CircularPreorder.btw_refl, QuotientAddGroup.btw_coe_iff, CircularOrder.btw_total, btw_rfl_left, QuotientAddGroup.btw_coe_iff', Fin.btw_iff, btw_rfl_right, btw_rfl, CircularPreorder.sbtw_iff_btw_not_btw, btw_iff, Int.btw_iff, btw_refl_left_right, btw_cyclic, sbtw_iff_not_btw, btw_refl_right, SBtw.sbtw.btw, SBtw.sbtw.not_btw

Btw.btw

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm 📖Btw.btw
CircularPreorder.toBtw
CircularPartialOrder.toCircularPreorder
CircularPartialOrder.btw_antisymm
cyclic_left 📖Btw.btw
CircularPreorder.toBtw
CircularPreorder.btw_cyclic_left
cyclic_right 📖Btw.btw
CircularPreorder.toBtw
btw_cyclic_right
not_sbtw 📖mathematicalBtw.btw
CircularPreorder.toBtw
SBtw.sbtw
CircularPreorder.toSBtw
not_sbtw_of_btw
sbtw_of_not_btw 📖mathematicalBtw.btw
CircularPreorder.toBtw
SBtw.sbtw
CircularPreorder.toSBtw
sbtw_of_btw_not_btw

CircularOrder

Definitions

NameCategoryTheorems
toCircularPartialOrder 📖CompOp
17 mathmath: Set.compl_cIoo, Set.left_mem_cIcc, Fin.sbtw_iff, Set.compl_cIcc, btw_refl_left, btw_rfl_left_right, btw_iff_not_sbtw, btw_total, btw_rfl_left, Fin.btw_iff, btw_rfl_right, Set.right_mem_cIcc, Int.btw_iff, btw_refl_left_right, sbtw_iff_not_btw, btw_refl_right, Int.sbtw_iff

Theorems

NameKindAssumesProvesValidatesDepends On
btw_total 📖mathematicalBtw.btw
CircularPreorder.toBtw
CircularPartialOrder.toCircularPreorder
toCircularPartialOrder

CircularPartialOrder

Definitions

NameCategoryTheorems
toCircularPreorder 📖CompOp
17 mathmath: Set.compl_cIoo, Set.left_mem_cIcc, Fin.sbtw_iff, Set.compl_cIcc, btw_refl_left, btw_rfl_left_right, btw_iff_not_sbtw, CircularOrder.btw_total, btw_rfl_left, Fin.btw_iff, btw_rfl_right, Set.right_mem_cIcc, Int.btw_iff, btw_refl_left_right, sbtw_iff_not_btw, btw_refl_right, Int.sbtw_iff

Theorems

NameKindAssumesProvesValidatesDepends On
btw_antisymm 📖Btw.btw
CircularPreorder.toBtw
toCircularPreorder

CircularPreorder

Definitions

NameCategoryTheorems
toBtw 📖CompOp
21 mathmath: Set.mem_cIcc, btw_of_sbtw, sbtw_iff_btw_not_btw, not_btw_of_sbtw, btw_refl_left, btw_rfl_left_right, btw_iff_not_sbtw, btw_refl, CircularOrder.btw_total, btw_rfl_left, Fin.btw_iff, btw_rfl_right, btw_rfl, sbtw_iff_btw_not_btw, Int.btw_iff, btw_refl_left_right, btw_cyclic, sbtw_iff_not_btw, btw_refl_right, SBtw.sbtw.btw, SBtw.sbtw.not_btw
toSBtw 📖CompOp
16 mathmath: sbtw_irrefl_right, not_sbtw_of_btw, sbtw_iff_btw_not_btw, sbtw_cyclic, Fin.sbtw_iff, btw_iff_not_sbtw, sbtw_irrefl_left_right, sbtw_of_btw_not_btw, sbtw_irrefl, Set.mem_cIoo, Btw.btw.sbtw_of_not_btw, sbtw_iff_btw_not_btw, sbtw_irrefl_left, Btw.btw.not_sbtw, sbtw_iff_not_btw, Int.sbtw_iff

Theorems

NameKindAssumesProvesValidatesDepends On
btw_cyclic_left 📖Btw.btw
toBtw
btw_refl 📖mathematicalBtw.btw
toBtw
sbtw_iff_btw_not_btw 📖mathematicalSBtw.sbtw
toSBtw
Btw.btw
toBtw
sbtw_trans_left 📖SBtw.sbtw
toSBtw

LE

Definitions

NameCategoryTheorems
toBtw 📖CompOp
1 mathmath: btw_iff

LT

Definitions

NameCategoryTheorems
toSBtw 📖CompOp
1 mathmath: sbtw_iff

LinearOrder

Definitions

NameCategoryTheorems
toCircularOrder 📖CompOp

OrderDual

Definitions

NameCategoryTheorems
btw 📖CompOp
circularPartialOrder 📖CompOp
circularPreorder 📖CompOp
instCircularOrder 📖CompOp
sbtw 📖CompOp

PartialOrder

Definitions

NameCategoryTheorems
toCircularPartialOrder 📖CompOp

Preorder

Definitions

NameCategoryTheorems
toCircularPreorder 📖CompOp

SBtw

Definitions

NameCategoryTheorems
sbtw 📖MathDef
17 mathmath: sbtw_irrefl_right, not_sbtw_of_btw, sbtw_iff_btw_not_btw, sbtw_cyclic, Fin.sbtw_iff, btw_iff_not_sbtw, sbtw_irrefl_left_right, sbtw_iff, sbtw_of_btw_not_btw, sbtw_irrefl, Set.mem_cIoo, Btw.btw.sbtw_of_not_btw, CircularPreorder.sbtw_iff_btw_not_btw, sbtw_irrefl_left, Btw.btw.not_sbtw, sbtw_iff_not_btw, Int.sbtw_iff

SBtw.sbtw

Theorems

NameKindAssumesProvesValidatesDepends On
btw 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
Btw.btw
CircularPreorder.toBtw
btw_of_sbtw
cyclic_left 📖SBtw.sbtw
CircularPreorder.toSBtw
sbtw_cyclic_left
cyclic_right 📖SBtw.sbtw
CircularPreorder.toSBtw
sbtw_cyclic_right
not_btw 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
Btw.btw
CircularPreorder.toBtw
not_btw_of_sbtw
not_sbtw 📖SBtw.sbtw
CircularPreorder.toSBtw
sbtw_asymm
trans_left 📖SBtw.sbtw
CircularPreorder.toSBtw
CircularPreorder.sbtw_trans_left
trans_right 📖SBtw.sbtw
CircularPreorder.toSBtw
sbtw_trans_right

Set

Definitions

NameCategoryTheorems
cIcc 📖CompOp
5 mathmath: mem_cIcc, compl_cIoo, left_mem_cIcc, compl_cIcc, right_mem_cIcc
cIoo 📖CompOp
3 mathmath: compl_cIoo, compl_cIcc, mem_cIoo

Theorems

NameKindAssumesProvesValidatesDepends On
compl_cIcc 📖mathematicalCompl.compl
Set
instCompl
cIcc
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
cIoo
ext
mem_cIoo
sbtw_iff_not_btw
cIcc.eq_1
mem_compl_iff
mem_setOf
compl_cIoo 📖mathematicalCompl.compl
Set
instCompl
cIoo
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
cIcc
ext
mem_cIcc
btw_iff_not_sbtw
cIoo.eq_1
mem_compl_iff
mem_setOf
left_mem_cIcc 📖mathematicalSet
instMembership
cIcc
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
btw_rfl_left
mem_cIcc 📖mathematicalSet
instMembership
cIcc
Btw.btw
CircularPreorder.toBtw
mem_cIoo 📖mathematicalSet
instMembership
cIoo
SBtw.sbtw
CircularPreorder.toSBtw
right_mem_cIcc 📖mathematicalSet
instMembership
cIcc
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
btw_rfl_right

(root)

Definitions

NameCategoryTheorems
Btw 📖CompData
CircularOrder 📖CompData
CircularPartialOrder 📖CompData
CircularPreorder 📖CompData
SBtw 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
btw_cyclic 📖mathematicalBtw.btw
CircularPreorder.toBtw
btw_cyclic_right
CircularPreorder.btw_cyclic_left
btw_cyclic_right 📖Btw.btw
CircularPreorder.toBtw
Btw.btw.cyclic_left
btw_iff 📖mathematicalBtw.btw
LE.toBtw
btw_iff_not_sbtw 📖mathematicalBtw.btw
CircularPreorder.toBtw
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
SBtw.sbtw
CircularPreorder.toSBtw
iff_not_comm
sbtw_iff_not_btw
btw_of_sbtw 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
Btw.btw
CircularPreorder.toBtw
sbtw_iff_btw_not_btw
btw_refl_left 📖mathematicalBtw.btw
CircularPreorder.toBtw
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
Btw.btw.cyclic_right
btw_rfl_left_right
btw_refl_left_right 📖mathematicalBtw.btw
CircularPreorder.toBtw
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
CircularOrder.btw_total
btw_refl_right 📖mathematicalBtw.btw
CircularPreorder.toBtw
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
Btw.btw.cyclic_left
btw_rfl_left_right
btw_rfl 📖mathematicalBtw.btw
CircularPreorder.toBtw
CircularPreorder.btw_refl
btw_rfl_left 📖mathematicalBtw.btw
CircularPreorder.toBtw
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
btw_refl_left
btw_rfl_left_right 📖mathematicalBtw.btw
CircularPreorder.toBtw
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
btw_refl_left_right
btw_rfl_right 📖mathematicalBtw.btw
CircularPreorder.toBtw
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
btw_refl_right
not_btw_of_sbtw 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
Btw.btw
CircularPreorder.toBtw
sbtw_iff_btw_not_btw
not_sbtw_of_btw 📖mathematicalBtw.btw
CircularPreorder.toBtw
SBtw.sbtw
CircularPreorder.toSBtw
SBtw.sbtw.not_btw
sbtw_asymm 📖SBtw.sbtw
CircularPreorder.toSBtw
Btw.btw.not_sbtw
SBtw.sbtw.btw
sbtw_cyclic 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
sbtw_cyclic_right
sbtw_cyclic_left
sbtw_cyclic_left 📖SBtw.sbtw
CircularPreorder.toSBtw
Btw.btw.sbtw_of_not_btw
Btw.btw.cyclic_left
SBtw.sbtw.btw
SBtw.sbtw.not_btw
sbtw_cyclic_right 📖SBtw.sbtw
CircularPreorder.toSBtw
SBtw.sbtw.cyclic_left
sbtw_iff 📖mathematicalSBtw.sbtw
LT.toSBtw
sbtw_iff_btw_not_btw 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
Btw.btw
CircularPreorder.toBtw
CircularPreorder.sbtw_iff_btw_not_btw
sbtw_iff_not_btw 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
CircularPartialOrder.toCircularPreorder
CircularOrder.toCircularPartialOrder
Btw.btw
CircularPreorder.toBtw
sbtw_iff_btw_not_btw
CircularOrder.btw_total
sbtw_irrefl 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
sbtw_irrefl_left_right
sbtw_irrefl_left 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
sbtw_irrefl_left_right
SBtw.sbtw.cyclic_left
sbtw_irrefl_left_right 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
SBtw.sbtw.not_btw
SBtw.sbtw.btw
sbtw_irrefl_right 📖mathematicalSBtw.sbtw
CircularPreorder.toSBtw
sbtw_irrefl_left_right
SBtw.sbtw.cyclic_right
sbtw_of_btw_not_btw 📖mathematicalBtw.btw
CircularPreorder.toBtw
SBtw.sbtw
CircularPreorder.toSBtw
sbtw_iff_btw_not_btw
sbtw_trans_right 📖SBtw.sbtw
CircularPreorder.toSBtw
SBtw.sbtw.cyclic_right
SBtw.sbtw.trans_left
SBtw.sbtw.cyclic_left

---

← Back to Index