Documentation Verification Report

Cofinal

πŸ“ Source: Mathlib/Order/Cofinal.lean

Statistics

MetricCount
DefinitionsCofinal, instInhabitedSubtypeSetIsCofinal
2
Theoremsof_not_isCofinal, map_cofinal, mem_of_isMax, mono, of_isEmpty, of_not_bddAbove, singleton_top, top_mem, trans, univ, map_cofinal, isCofinal_empty_iff, isCofinal_iff_top_mem, isCofinal_setOf_imp_lt, not_bddAbove_iff_isCofinal, not_isCofinal_iff, not_isCofinal_iff_bddAbove
17
Total19

BddAbove

Theorems

NameKindAssumesProvesValidatesDepends On
of_not_isCofinal πŸ“–mathematicalIsCofinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
BddAboveβ€”not_isCofinal_iff
LT.lt.le

GaloisConnection

Theorems

NameKindAssumesProvesValidatesDepends On
map_cofinal πŸ“–mathematicalGaloisConnection
IsCofinal
Preorder.toLE
Set.imageβ€”Set.mem_image_of_mem
le_iff_le

IsCofinal

Theorems

NameKindAssumesProvesValidatesDepends On
mem_of_isMax πŸ“–mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
IsCofinal
Set
Set.instMembership
β€”IsMax.eq_of_ge
mono πŸ“–β€”Set
Set.instHasSubset
IsCofinal
β€”β€”β€”
of_isEmpty πŸ“–mathematicalβ€”IsCofinalβ€”β€”
of_not_bddAbove πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsCofinalβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
BddAbove.of_not_isCofinal
singleton_top πŸ“–mathematicalβ€”IsCofinal
Set
Set.instSingletonSet
Top.top
OrderTop.toTop
β€”Set.mem_singleton
le_top
top_mem πŸ“–mathematicalIsCofinal
Preorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
Top.top
OrderTop.toTop
β€”mem_of_isMax
isMax_top
trans πŸ“–mathematicalIsCofinal
Preorder.toLE
Set.Elem
Set
Set.instMembership
Set.imageβ€”Set.mem_image_of_mem
LE.le.trans
univ πŸ“–mathematicalβ€”IsCofinal
Preorder.toLE
Set.univ
β€”le_rfl

Order

Definitions

NameCategoryTheorems
Cofinal πŸ“–CompData
3 mathmath: Cofinal.above_mem, cofinal_meets_idealOfCofinals, sequenceOfCofinals.encode_mem

OrderIso

Theorems

NameKindAssumesProvesValidatesDepends On
map_cofinal πŸ“–mathematicalIsCofinal
Preorder.toLE
Set.image
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”GaloisConnection.map_cofinal
to_galoisConnection

(root)

Definitions

NameCategoryTheorems
instInhabitedSubtypeSetIsCofinal πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isCofinal_empty_iff πŸ“–mathematicalβ€”IsCofinal
Set
Set.instEmptyCollection
IsEmpty
β€”IsCofinal.of_isEmpty
isCofinal_iff_top_mem πŸ“–mathematicalβ€”IsCofinal
Preorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
Top.top
OrderTop.toTop
β€”IsCofinal.top_mem
le_top
isCofinal_setOf_imp_lt πŸ“–mathematicalβ€”IsCofinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
setOf
β€”WellFounded.has_min
IsWellFounded.wf
Set.nonempty_Ici
LE.le.trans
not_bddAbove_iff_isCofinal πŸ“–mathematicalβ€”BddAbove
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsCofinal
β€”not_iff_comm
not_isCofinal_iff_bddAbove
not_isCofinal_iff πŸ“–mathematicalβ€”IsCofinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
β€”β€”
not_isCofinal_iff_bddAbove πŸ“–mathematicalβ€”IsCofinal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
BddAbove
β€”BddAbove.of_not_isCofinal
not_isCofinal_iff
NoMaxOrder.exists_gt
LE.le.trans_lt

---

← Back to Index