Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Order/CompactlyGenerated/Basic.lean

Statistics

MetricCount
DefinitionsIsSupClosedCompact, IsSupFiniteCompact, IsCompactElement, IsCompactlyGenerated
4
TheoremsIic_coatomic_of_compact_element, directed_sSup_lt_of_lt, exists_finset_of_le_iSup, isSupFiniteCompact, wellFoundedGT, isSupClosedCompact, wellFoundedGT, isSupClosedCompact, isSupFiniteCompact, coatomic_of_top_compact, isCompactElement_finsetSup, isCompactElement_iff_exists_le_iSup_of_le_iSup, isCompactElement_iff_exists_le_sSup_of_le_sSup, isCompactElement_iff_le_of_directed_sSup_le, isCompactlyGenerated_of_wellFoundedGT, isSupClosedCompact_iff_wellFoundedGT, isSupFiniteCompact_iff_all_elements_compact, isSupFiniteCompact_iff_isSupClosedCompact, wellFoundedGT_characterisations, wellFoundedGT_iff_isSupFiniteCompact, disjoint_iSup_left, disjoint_iSup_right, iSup_inf_eq, inf_iSup_eq, disjoint_sSup_left, disjoint_sSup_right, inf_sSup_eq, sSup_inf_eq, exists_sSup_eq, finite_ne_bot_of_iSupIndep, finite_of_iSupIndep, finite_of_sSupIndep, finite_ne_bot_of_iSupIndep, finite_of_iSupIndep, finite_of_sSupIndep, complementedLattice_iff_isAtomistic, complementedLattice_of_isAtomistic, complementedLattice_of_sSup_atoms_eq_top, exists_sSupIndep_disjoint_sSup_atoms, exists_sSupIndep_isCompl_sSup_atoms, exists_sSupIndep_of_sSup_atoms, exists_sSupIndep_of_sSup_atoms_eq_top, iInf, iSupIndep_iff_supIndep_of_injOn, iSupIndep_sUnion_of_directed, inf_sSup_eq_iSup_inf_sup_finset, isAtomic_of_complementedLattice, isAtomistic_of_complementedLattice, le_iff_compact_le_imp, sSupIndep_iUnion_of_directed, sSupIndep_iff_finite, sSup_compact_eq_top, sSup_compact_le_eq
53
Total57

CompleteLattice

Definitions

NameCategoryTheorems
IsSupClosedCompact πŸ“–MathDef
5 mathmath: WellFoundedGT.isSupClosedCompact, isSupFiniteCompact_iff_isSupClosedCompact, isSupClosedCompact_iff_wellFoundedGT, IsSupFiniteCompact.isSupClosedCompact, wellFoundedGT_characterisations
IsSupFiniteCompact πŸ“–MathDef
6 mathmath: IsSupClosedCompact.isSupFiniteCompact, WellFoundedGT.isSupFiniteCompact, wellFoundedGT_iff_isSupFiniteCompact, isSupFiniteCompact_iff_isSupClosedCompact, isSupFiniteCompact_iff_all_elements_compact, wellFoundedGT_characterisations

Theorems

NameKindAssumesProvesValidatesDepends On
Iic_coatomic_of_compact_element πŸ“–mathematicalIsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
IsCoatomic
Set.Elem
Set.Iic
PartialOrder.toPreorder
Subtype.partialOrder
Set
Set.instMembership
Set.Iic.orderTop
β€”eq_or_ne
zorn_le_nonemptyβ‚€
IsCompactElement.directed_sSup_lt_of_lt
IsChain.directedOn
instReflLe
le_sSup
lt_of_le_of_ne
Set.not_nonempty_iff_eq_empty
bot_nonempty
le_of_lt
Maximal.prop
ne_of_lt
by_contradiction
Maximal.eq_of_le
LT.lt.le
lt_irrefl
coatomic_of_top_compact πŸ“–mathematicalIsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
toLattice
BoundedOrder.toOrderTop
toBoundedOrder
IsCoatomicβ€”OrderIso.isCoatomic_iff
Iic_coatomic_of_compact_element
isCompactElement_finsetSup πŸ“–mathematicalIsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
Finset.sup
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
toBoundedOrder
β€”Finset.sup_image
Finset.sup_le_of_le_directed
Finset.mem_image
le_trans
Finset.le_sup
isCompactElement_iff_exists_le_iSup_of_le_iSup πŸ“–mathematicalβ€”IsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
Preorder.toLE
PartialOrder.toPreorder
Finset.sup
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
BoundedOrder.toOrderBot
SemilatticeSup.toPartialOrder
toBoundedOrder
β€”isCompactElement_iff_exists_le_sSup_of_le_sSup
Subtype.prop
LE.le.trans
Finset.sup_le_iff
Finset.le_sup
Finset.mem_image_of_mem
Finset.mem_univ
Subtype.range_coe
Finset.coe_image
Subtype.coe_preimage_self
isCompactElement_iff_exists_le_sSup_of_le_sSup πŸ“–mathematicalβ€”IsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Finset.sup
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
BoundedOrder.toOrderBot
SemilatticeSup.toPartialOrder
toBoundedOrder
β€”isCompactElement_iff_le_of_directed_sSup_le
Finset.coe_union
Finset.sup_union
sSup_le_sSup
Finset.coe_singleton
Finset.sup_singleton
Finset.coe_empty
Finset.sup_empty
Set.nonempty_of_mem
le_trans
le_rfl
Finset.sup_le_of_le_directed
isCompactElement_iff_le_of_directed_sSup_le πŸ“–mathematicalβ€”IsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
β€”isLUB_sSup
isLUB_iff_sSup_eq
isCompactlyGenerated_of_wellFoundedGT πŸ“–mathematicalβ€”IsCompactlyGeneratedβ€”isSupFiniteCompact_iff_all_elements_compact
wellFoundedGT_iff_isSupFiniteCompact
sSup_singleton
isSupClosedCompact_iff_wellFoundedGT πŸ“–mathematicalβ€”IsSupClosedCompact
WellFoundedGT
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
β€”List.TFAE.out
wellFoundedGT_characterisations
isSupFiniteCompact_iff_all_elements_compact πŸ“–mathematicalβ€”IsSupFiniteCompact
IsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
β€”le_refl
le_sSup
le_antisymm
isSupFiniteCompact_iff_isSupClosedCompact πŸ“–mathematicalβ€”IsSupFiniteCompact
IsSupClosedCompact
β€”List.TFAE.out
wellFoundedGT_characterisations
wellFoundedGT_characterisations πŸ“–mathematicalβ€”List.TFAE
WellFoundedGT
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
IsSupFiniteCompact
IsSupClosedCompact
β€”WellFoundedGT.isSupFiniteCompact
IsSupFiniteCompact.isSupClosedCompact
IsSupClosedCompact.wellFoundedGT
isSupFiniteCompact_iff_all_elements_compact
List.tfae_of_cycle
wellFoundedGT_iff_isSupFiniteCompact πŸ“–mathematicalβ€”WellFoundedGT
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
IsSupFiniteCompact
β€”List.TFAE.out
wellFoundedGT_characterisations

CompleteLattice.IsCompactElement

Theorems

NameKindAssumesProvesValidatesDepends On
directed_sSup_lt_of_lt πŸ“–mathematicalIsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Set.Nonempty
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLT
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”CompleteLattice.sSup_le
LT.lt.le
eq_iff_le_not_lt
CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le
Eq.le
LT.lt.ne
LE.le.antisymm
exists_finset_of_le_iSup πŸ“–mathematicalIsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Preorder.toLE
PartialOrder.toPreorder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Finset
Finset.instMembership
β€”iSup_le_iSup_of_subset
Finset.subset_union_left
Finset.subset_union_right
LE.le.trans
iSup_le
le_sSup_of_le
le_iSup_of_le
Finset.mem_singleton_self
le_rfl
CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le
Set.range_nonempty

CompleteLattice.IsSupClosedCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isSupFiniteCompact πŸ“–mathematicalCompleteLattice.IsSupClosedCompactCompleteLattice.IsSupFiniteCompactβ€”CompleteLattice.isSupFiniteCompact_iff_isSupClosedCompact
wellFoundedGT πŸ“–mathematicalCompleteLattice.IsSupClosedCompactWellFoundedGT
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
β€”RelEmbedding.wellFounded_iff_isEmpty
instIsStrictOrderGt
Set.mem_range_self
RelHomClass.map_sup
RelEmbedding.instRelHomClass
Set.mem_range
RelEmbedding.map_rel_iff
lt_irrefl
lt_of_le_of_lt
CompleteLattice.le_sSup

CompleteLattice.IsSupFiniteCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isSupClosedCompact πŸ“–mathematicalCompleteLattice.IsSupFiniteCompactCompleteLattice.IsSupClosedCompactβ€”Finset.eq_empty_or_nonempty
Finset.sup_empty
eq_singleton_bot_of_sSup_eq_bot_of_nonempty
SupClosed.finsetSup_mem
wellFoundedGT πŸ“–mathematicalCompleteLattice.IsSupFiniteCompactWellFoundedGT
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
β€”CompleteLattice.wellFoundedGT_iff_isSupFiniteCompact

CompleteLattice.WellFoundedGT

Theorems

NameKindAssumesProvesValidatesDepends On
isSupClosedCompact πŸ“–mathematicalβ€”CompleteLattice.IsSupClosedCompactβ€”CompleteLattice.isSupClosedCompact_iff_wellFoundedGT
isSupFiniteCompact πŸ“–mathematicalβ€”CompleteLattice.IsSupFiniteCompactβ€”WellFounded.has_min
wellFounded_gt
Finset.coe_empty
Finset.sup_empty
LE.le.antisymm
CompleteLattice.sSup_le
eq_of_le_of_not_lt
Finset.sup_mono
Finset.subset_insert
Finset.coe_insert
Finset.sup_insert
Finset.sup_id_eq_sSup
sSup_le_sSup

Directed

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_iSup_left πŸ“–mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”iSup_inf_eq
disjoint_iSup_right πŸ“–mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”inf_iSup_eq
iSup_inf_eq πŸ“–mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”iSup.eq_1
DirectedOn.sSup_inf_eq
directedOn_range
iSup_range
inf_iSup_eq πŸ“–mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”iSup.eq_1
DirectedOn.inf_sSup_eq
directedOn_range
iSup_range

DirectedOn

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_sSup_left πŸ“–mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”sSup_inf_eq
disjoint_sSup_right πŸ“–mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”inf_sSup_eq
inf_sSup_eq πŸ“–mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup
Set
Set.instMembership
β€”le_antisymm
le_iff_compact_le_imp
CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le
le_inf_iff
LE.le.trans
le_inf
le_biSup
Set.not_nonempty_iff_eq_empty
sSup_empty
inf_of_le_right
iSup_congr_Prop
iSup_neg
iSup_bot
iSup_inf_le_inf_sSup
sSup_inf_eq πŸ“–mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup
Set
Set.instMembership
β€”inf_comm
iSup_congr_Prop
inf_sSup_eq

IsCompactlyGenerated

Theorems

NameKindAssumesProvesValidatesDepends On
exists_sSup_eq πŸ“–mathematicalβ€”IsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”β€”

WellFoundedGT

Theorems

NameKindAssumesProvesValidatesDepends On
finite_ne_bot_of_iSupIndep πŸ“–mathematicaliSupIndepSet.Finite
setOf
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Set.Finite.of_finite_image
Set.Finite.subset
finite_of_sSupIndep
iSupIndep.sSupIndep_range
Set.image_subset_range
iSupIndep.injOn
finite_of_iSupIndep πŸ“–mathematicaliSupIndepFiniteβ€”Finite.of_injective_finite_range
iSupIndep.injective
Set.Finite.to_subtype
finite_of_sSupIndep
iSupIndep.sSupIndep_range
finite_of_sSupIndep πŸ“–mathematicalsSupIndepSet.Finiteβ€”CompleteLattice.WellFoundedGT.isSupFiniteCompact
Set.Infinite.diff
Finset.finite_toSet
Set.Infinite.nonempty
Finset.coe_insert
sSupIndep.mono
Set.union_singleton
Set.insert_diff_of_mem
Set.diff_singleton_eq_self
Finset.sup_id_eq_sSup
Disjoint.eq_bot
inf_eq_left
le_sSup

WellFoundedLT

Theorems

NameKindAssumesProvesValidatesDepends On
finite_ne_bot_of_iSupIndep πŸ“–mathematicaliSupIndepSet.Finite
setOf
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Set.Finite.of_finite_image
Set.Finite.subset
finite_of_sSupIndep
iSupIndep.sSupIndep_range
Set.image_subset_range
iSupIndep.injOn
finite_of_iSupIndep πŸ“–mathematicaliSupIndepFiniteβ€”Finite.of_injective_finite_range
iSupIndep.injective
Set.Finite.to_subtype
finite_of_sSupIndep
iSupIndep.sSupIndep_range
finite_of_sSupIndep πŸ“–mathematicalsSupIndepSet.Finiteβ€”Set.Infinite.to_subtype
Set.Infinite.diff
Set.finite_singleton
sup_le_iff
le_iSupβ‚‚_of_le
le_rfl
iSupβ‚‚_le
LE.le.trans
LT.lt.trans_le
Disjoint.right_lt_sup_of_left_ne_bot
Disjoint.mono_right
le_sSup
LT.lt.not_ge
LE.le.trans_eq
Function.Embedding.inj'
Subtype.val_injective
RelEmbedding.not_wellFounded
instIsStrictOrderLt
wellFounded_lt

(root)

Definitions

NameCategoryTheorems
IsCompactElement πŸ“–MathDef
17 mathmath: TopologicalSpace.Opens.isCompactElement_iff, LieSubmodule.isCompactElement_lieSpan_singleton, IntermediateField.adjoin_simple_isCompactElement, IntermediateField.adjoin_finite_isCompactElement, Submodule.finite_span_isCompactElement, sSup_compact_eq_top, CompleteLattice.isCompactElement_iff_exists_le_iSup_of_le_iSup, Submodule.singleton_span_isCompactElement, IsCompactlyGenerated.exists_sSup_eq, Ideal.isCompactElement_top, IntermediateField.adjoin_finset_isCompactElement, sSup_compact_le_eq, CompleteLattice.isSupFiniteCompact_iff_all_elements_compact, Submodule.fg_iff_compact, CompleteLattice.isCompactElement_iff_exists_le_sSup_of_le_sSup, Submodule.finset_span_isCompactElement, CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le
IsCompactlyGenerated πŸ“–CompData
5 mathmath: Submodule.instIsCompactlyGenerated, CompleteLattice.isCompactlyGenerated_of_wellFoundedGT, IntermediateField.instIsCompactlyGenerated, LieSubmodule.instIsCompactlyGenerated, Set.Iic.instIsCompactlyGenerated

Theorems

NameKindAssumesProvesValidatesDepends On
complementedLattice_iff_isAtomistic πŸ“–mathematicalβ€”ComplementedLattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteLattice.toBoundedOrder
IsAtomistic
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
β€”isAtomistic_of_complementedLattice
complementedLattice_of_isAtomistic
complementedLattice_of_isAtomistic πŸ“–mathematicalβ€”ComplementedLattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteLattice.toBoundedOrder
β€”complementedLattice_of_sSup_atoms_eq_top
sSup_atoms_eq_top
complementedLattice_of_sSup_atoms_eq_top πŸ“–mathematicalSupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
setOf
IsAtom
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
ComplementedLattice
ConditionallyCompleteLattice.toLattice
β€”exists_sSupIndep_isCompl_sSup_atoms
exists_sSupIndep_disjoint_sSup_atoms πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
setOf
IsAtom
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
sSupIndep
Disjoint
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
β€”zorn_subset
iSupIndep_sUnion_of_directed
IsChain.directedOn
Set.instReflSubset
sSup_sUnion
sSup_image
DirectedOn.disjoint_sSup_right
directedOn_image
DirectedOn.mono
sSup_le_sSup
Set.subset_sUnion_of_mem
le_antisymm
sSup_le_iff
inf_eq_left
IsAtom.le_iff
inf_le_left
LE.le.trans
le_sSup
Disjoint.mono_right
le_sup_right
disjoint_iff
eq_or_ne
Set.union_singleton
Set.insert_diff_of_mem
Set.diff_subset
Set.mem_singleton_iff
Set.mem_union
Set.insert_diff_of_notMem
sSup_union
sSup_singleton
Disjoint.disjoint_sup_right_of_disjoint_sup_left
Disjoint.symm
sSup_insert
Set.insert_diff_singleton
Set.insert_eq_of_mem
le_refl
Set.subset_union_left
Set.mem_union_right
Set.mem_singleton
exists_sSupIndep_isCompl_sSup_atoms πŸ“–mathematicalSupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
setOf
IsAtom
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
sSupIndep
IsCompl
β€”exists_sSupIndep_disjoint_sSup_atoms
le_top
exists_sSupIndep_of_sSup_atoms πŸ“–mathematicalSupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
setOf
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
IsAtom
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
sSupIndepβ€”exists_sSupIndep_disjoint_sSup_atoms
bot_le
sup_of_le_right
exists_sSupIndep_of_sSup_atoms_eq_top πŸ“–mathematicalSupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
setOf
IsAtom
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
sSupIndepβ€”exists_sSupIndep_of_sSup_atoms
iSupIndep_iff_supIndep_of_injOn πŸ“–mathematicalSet.InjOn
setOf
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
iSupIndep
Finset.SupIndep
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”iSupIndep.supIndep'
iSupIndep_def'
inf_sSup_eq_iSup_inf_sup_finset
Finset.sup_erase_bot
Finset.coe_erase
Finset.ext
Finset.erase_insert_eq_erase
Finset.sup_image
Finset.supIndep_iff_disjoint_erase
Finset.mem_insert_self
iSupIndep_sUnion_of_directed πŸ“–mathematicalDirectedOn
Set
Set.instHasSubset
sSupIndep
Set.sUnionβ€”Set.sUnion_eq_iUnion
sSupIndep_iUnion_of_directed
DirectedOn.directed_val
inf_sSup_eq_iSup_inf_sup_finset πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iSup
Finset
Set
Set.instHasSubset
SetLike.coe
Finset.instSetLike
Finset.sup
Lattice.toSemilatticeSup
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toBoundedOrder
β€”le_antisymm
le_iff_compact_le_imp
CompleteLattice.isCompactElement_iff_exists_le_sSup_of_le_sSup
le_inf_iff
LE.le.trans
le_inf
le_iSupβ‚‚
iSup_le
inf_le_inf_left
sSup_le_sSup
Finset.sup_id_eq_sSup
isAtomic_of_complementedLattice πŸ“–mathematicalβ€”IsAtomic
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
β€”sSup_compact_le_eq
sSup_eq_bot
Set.not_subset
CompleteLattice.Iic_coatomic_of_compact_element
le_refl
IsAtomic.eq_bot_or_exists_atom_le
isAtomic_iff_isCoatomic
IsModularLattice.isModularLattice_Iic
IsModularLattice.complementedLattice_Iic
IsAtom.of_isAtom_coe_Iic
LE.le.trans
Subtype.coe_le_coe
isAtomistic_of_complementedLattice πŸ“–mathematicalβ€”IsAtomistic
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
β€”CompleteLattice.isAtomistic_iff
sSup_le
lt_or_eq_of_le
ComplementedLattice.exists_isCompl
IsModularLattice.complementedLattice_Iic
IsAtomic.eq_bot_or_exists_atom_le
IsAtomic.Set.Iic.isAtomic
isAtomic_of_complementedLattice
ne_of_lt
eq_top_of_isCompl_bot
eq_bot_iff
le_trans
le_inf
Subtype.coe_le_coe
le_sSup
IsAtom.of_isAtom_coe_Iic
Disjoint.le_bot
IsCompl.disjoint
le_iff_compact_le_imp πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
β€”le_trans
sSup_compact_le_eq
sSup_le_sSup
sSupIndep_iUnion_of_directed πŸ“–mathematicalDirected
Set
Set.instHasSubset
sSupIndep
Set.iUnionβ€”sSupIndep_iff_finite
Set.finite_subset_iUnion
Finset.finite_toSet
Directed.finset_le
Set.instIsTransSubset
sSupIndep.mono
Set.Subset.trans
Set.iUnionβ‚‚_subset
Set.Finite.mem_toFinset
sSupIndep_iff_finite πŸ“–mathematicalβ€”sSupIndep
SetLike.coe
Finset
Finset.instSetLike
β€”sSupIndep.mono
disjoint_iff
inf_sSup_eq_iSup_inf_sup_finset
iSup_eq_bot
Finset.sup_id_eq_sSup
Disjoint.eq_bot
Finset.coe_insert
Set.insert_subset_iff
Set.Subset.trans
Set.diff_subset
Finset.mem_insert_self
Set.insert_diff_self_of_notMem
Set.mem_diff
Set.mem_singleton
sSup_compact_eq_top πŸ“–mathematicalβ€”SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
setOf
IsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”sSup_compact_le_eq
sSup_compact_le_eq πŸ“–mathematicalβ€”SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
setOf
IsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
Preorder.toLE
PartialOrder.toPreorder
β€”IsCompactlyGenerated.exists_sSup_eq
le_antisymm
sSup_le
sSup_le_sSup
le_sSup

iSupIndep

Theorems

NameKindAssumesProvesValidatesDepends On
iInf πŸ“–mathematicaliSupIndepiInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
β€”iSupIndep_iff_supIndep_of_injOn
injOn_iInf
Finset.one_lt_card_iff
Function.ne_iff
Finset.image_biUnion_filter_eq
Finset.SupIndep.biUnion
Finset.SupIndep.mono
supIndep'
iInf_le

---

← Back to Index