Documentation Verification Report

Intervals

📁 Source: Mathlib/Order/CompactlyGenerated/Intervals.lean

Statistics

MetricCount
Definitions0
TheoremsinstIsCompactlyGenerated, isCompactElement, complementedLattice_of_complementedLattice_Iic
3
Total3

Set.Iic

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCompactlyGenerated 📖mathematicalIsCompactlyGenerated
Set.Elem
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
IsCompactlyGenerated.exists_sSup_eq
sSup_le_iff
isCompactElement
Set.ext
isCompactElement 📖mathematicalIsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Set
Set.instMembership
Set.Iic
PartialOrder.toPreorder
Set.Elem
Subtype.partialOrder
Finset.sup_eq_iSup
le_trans
le_refl
coe_iSup
iSup_congr_Prop

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
complementedLattice_of_complementedLattice_Iic 📖ComplementedLattice
Set.Elem
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Set.Iic.instLatticeElem
ConditionallyCompleteLattice.toLattice
Set.Iic.instBoundedOrderElemOfOrderBot
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
Top.top
OrderTop.toTop
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
complementedLattice_of_sSup_atoms_eq_top
complementedLattice_iff_isAtomistic
IsModularLattice.isModularLattice_Iic
Set.Iic.instIsCompactlyGenerated
eq_sSup_atoms
IsAtom.of_isAtom_coe_Iic
sSup_iUnion
biSup_congr'
eq_top_iff
sSup_le_sSup

---

← Back to Index