Documentation Verification Report

CompleteLatticeIntervals

📁 Source: Mathlib/Order/CompleteLatticeIntervals.lean

Statistics

MetricCount
DefinitionscompleteLattice, instCompleteLattice, instCompleteLinearOrderElemIccOfFactLe, ordConnectedSubsetConditionallyCompleteLinearOrder, subsetConditionallyCompleteLinearOrder, subsetInfSet, subsetSupSet
7
Theoremscoe_iInf, coe_iSup, coe_sInf, coe_sSup, coe_biInf, coe_biSup, coe_iInf, coe_iSup, coe_sInf, coe_sSup, sInf_within_of_ordConnected, sSup_within_of_ordConnected, subset_sInf_def, subset_sInf_emptyset, subset_sInf_of_not_bddBelow, subset_sInf_of_within, subset_sSup_def, subset_sSup_emptyset, subset_sSup_of_not_bddAbove, subset_sSup_of_within
20
Total27

Set.Icc

Definitions

NameCategoryTheorems
completeLattice 📖CompOp
4 mathmath: coe_sSup, coe_iInf, coe_sInf, coe_iSup

Theorems

NameKindAssumesProvesValidatesDepends On
coe_iInf 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set
Set.instMembership
Set.Icc
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
CompleteLattice.toConditionallyCompleteLattice
completeLattice
coe_sInf
Set.range_nonempty
Set.range_comp
coe_iSup 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set
Set.instMembership
Set.Icc
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
CompleteLattice.toConditionallyCompleteLattice
completeLattice
coe_sSup
Set.range_nonempty
Set.range_comp
coe_sInf 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
Set.Elem
Set.Icc
Set
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set.image
Set.Nonempty.ne_empty
coe_sSup 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
Set.Elem
Set.Icc
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set.image
Set.Nonempty.ne_empty

Set.Iic

Definitions

NameCategoryTheorems
instCompleteLattice 📖CompOp
8 mathmath: coe_sInf, coe_iInf, coe_biInf, coe_sSup, instIsCompactlyGenerated, coe_iSup, iSupIndep.of_coe_Iic_comp, coe_biSup

Theorems

NameKindAssumesProvesValidatesDepends On
coe_biInf 📖mathematicalSet
Set.instMembership
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
instCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
isEmpty_or_nonempty
coe_iInf
inf_of_le_left
inf_idem
coe_biSup 📖mathematicalSet
Set.instMembership
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
instCompleteLattice
coe_iSup
coe_iInf 📖mathematicalSet
Set.instMembership
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
instCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
iInf.eq_1
coe_sInf
Set.ext
coe_iSup 📖mathematicalSet
Set.instMembership
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
instCompleteLattice
iSup.eq_1
coe_sSup
Set.ext
coe_sInf 📖mathematicalSet
Set.instMembership
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
InfSet.sInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
instCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
Set.image
coe_sSup 📖mathematicalSet
Set.instMembership
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SupSet.sSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
instCompleteLattice
Set.image

(root)

Definitions

NameCategoryTheorems
instCompleteLinearOrderElemIccOfFactLe 📖CompOp
ordConnectedSubsetConditionallyCompleteLinearOrder 📖CompOp
subsetConditionallyCompleteLinearOrder 📖CompOp
subsetInfSet 📖CompOp
4 mathmath: subset_sInf_of_not_bddBelow, subset_sInf_emptyset, subset_sInf_of_within, subset_sInf_def
subsetSupSet 📖CompOp
4 mathmath: subset_sSup_emptyset, subset_sSup_of_within, subset_sSup_of_not_bddAbove, subset_sSup_def

Theorems

NameKindAssumesProvesValidatesDepends On
sInf_within_of_ordConnected 📖mathematicalSet.Nonempty
Set.Elem
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.image
Set.OrdConnected.out
Monotone.le_csInf_image
Subtype.mono_coe
Monotone.csInf_image_le
sSup_within_of_ordConnected 📖mathematicalSet.Nonempty
Set.Elem
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
Set.OrdConnected.out
Monotone.le_csSup_image
Subtype.mono_coe
Monotone.csSup_image_le
subset_sInf_def 📖mathematicalInfSet.sInf
Set.Elem
subsetInfSet
Set.Nonempty
BddBelow
Preorder.toLE
Set
Set.instMembership
Set.image
subset_sInf_emptyset 📖mathematicalInfSet.sInf
Set.Elem
subsetInfSet
Set
Set.instEmptyCollection
Set.image_empty
subset_sInf_of_not_bddBelow 📖mathematicalBddBelow
Set.Elem
Preorder.toLE
Set
Set.instMembership
InfSet.sInf
subsetInfSet
subset_sInf_of_within 📖mathematicalSet.Nonempty
Set.Elem
BddBelow
Preorder.toLE
Set
Set.instMembership
InfSet.sInf
Set.image
subsetInfSet
subset_sSup_def 📖mathematicalSupSet.sSup
Set.Elem
subsetSupSet
Set.Nonempty
BddAbove
Preorder.toLE
Set
Set.instMembership
Set.image
subset_sSup_emptyset 📖mathematicalSupSet.sSup
Set.Elem
subsetSupSet
Set
Set.instEmptyCollection
Set.image_empty
subset_sSup_of_not_bddAbove 📖mathematicalBddAbove
Set.Elem
Preorder.toLE
Set
Set.instMembership
SupSet.sSup
subsetSupSet
subset_sSup_of_within 📖mathematicalSet.Nonempty
Set.Elem
BddAbove
Preorder.toLE
Set
Set.instMembership
SupSet.sSup
Set.image
subsetSupSet

---

← Back to Index