Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Order/CompleteLattice/Lemmas.lean

Statistics

MetricCount
DefinitionsinstCompleteLinearOrder, infSet, instCompleteLattice, supSet
4
TheoremsiInf_nat_add, iSup_nat_add, down_iInf, down_iSup, down_sInf, down_sSup, up_iInf, up_iSup, up_sInf, up_sSup, biInf_sup_le_biInf_sup, biSup_inf_le_biSup_inf, biSup_inf_le_inf_biSup, disjoint_of_sSup_disjoint, disjoint_of_sSup_disjoint_of_le_of_le, disjoint_sSup_left, disjoint_sSup_right, iInf_bool_eq, iInf_ge_eq_iInf_nat_add, iInf_iSup_ge_nat_add, iInf_nat_gt_zero_eq, iInf_sup_iInf_le, iInf_sup_le_iInf_sup, iSup_bool_eq, iSup_ge_eq_iSup_nat_add, iSup_iInf_ge_nat_add, iSup_inf_le_iSup_inf, iSup_inf_le_inf_iSup, iSup_inf_le_inf_sSup, iSup_inf_le_sSup_inf, iSup_nat_gt_zero_eq, inf_eq_iInf, inf_iInf_nat_succ, le_iSup_inf_iSup, sInf_sup_le_iInf_sup, sup_biInf_le_biInf_sup, sup_eq_iSup, sup_iInf_le_iInf_sup, sup_iSup_nat_succ, sup_sInf_le_iInf_sup
40
Total44

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
iInf_nat_add πŸ“–mathematicalAntitone
Nat.instPreorder
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iInf
CompleteSemilatticeInf.toInfSet
β€”Monotone.iSup_nat_add
dual_right

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
iSup_nat_add πŸ“–mathematicalMonotone
Nat.instPreorder
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”le_antisymm
iSup_le
le_iSup
iSup_mono

PUnit

Definitions

NameCategoryTheorems
instCompleteLinearOrder πŸ“–CompOpβ€”

ULift

Definitions

NameCategoryTheorems
infSet πŸ“–CompOp
4 mathmath: up_sInf, down_iInf, down_sInf, up_iInf
instCompleteLattice πŸ“–CompOpβ€”
supSet πŸ“–CompOp
4 mathmath: down_sSup, up_sSup, up_iSup, down_iSup

Theorems

NameKindAssumesProvesValidatesDepends On
down_iInf πŸ“–mathematicalβ€”iInf
infSet
β€”Set.preimage_eq_iff_eq_image
up_bijective
Set.range_comp
down_iSup πŸ“–mathematicalβ€”iSup
supSet
β€”Set.preimage_eq_iff_eq_image
up_bijective
Set.range_comp
down_sInf πŸ“–mathematicalβ€”InfSet.sInf
infSet
Set.preimage
β€”β€”
down_sSup πŸ“–mathematicalβ€”SupSet.sSup
supSet
Set.preimage
β€”β€”
up_iInf πŸ“–mathematicalβ€”iInf
infSet
β€”down_iInf
up_iSup πŸ“–mathematicalβ€”iSup
supSet
β€”down_iSup
up_sInf πŸ“–mathematicalβ€”InfSet.sInf
infSet
Set.preimage
β€”β€”
up_sSup πŸ“–mathematicalβ€”SupSet.sSup
supSet
Set.preimage
β€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
biInf_sup_le_biInf_sup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
iInf
CompleteSemilatticeInf.toInfSet
Set
Set.instMembership
β€”le_iInfβ‚‚
sup_le_sup_right
biInf_le
biSup_inf_le_biSup_inf πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
Set.instMembership
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
β€”biInf_sup_le_biInf_sup
biSup_inf_le_inf_biSup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
Set.instMembership
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
β€”sup_biInf_le_biInf_sup
disjoint_of_sSup_disjoint πŸ“–mathematicalDisjoint
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
Set.instMembership
Bot.bot
OrderBot.toBot
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
β€”disjoint_of_sSup_disjoint_of_le_of_le
le_sSup
disjoint_of_sSup_disjoint_of_le_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instMembership
Bot.bot
OrderBot.toBot
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
β€”β€”
disjoint_sSup_left πŸ“–β€”Disjoint
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
Set.instMembership
β€”β€”disjoint_iff_inf_le
iSupβ‚‚_le_iff
LE.le.trans
iSup_inf_le_sSup_inf
Disjoint.le_bot
disjoint_sSup_right πŸ“–β€”Disjoint
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
Set.instMembership
β€”β€”disjoint_iff_inf_le
iSupβ‚‚_le_iff
LE.le.trans
iSup_inf_le_inf_sSup
Disjoint.le_bot
iInf_bool_eq πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
β€”iSup_bool_eq
iInf_ge_eq_iInf_nat_add πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”iSup_ge_eq_iSup_nat_add
iInf_iSup_ge_nat_add πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup_iInf_ge_nat_add
iInf_nat_gt_zero_eq πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”iInf_range
Nat.range_succ
iInf_congr_Prop
iInf_sup_iInf_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
iInf
CompleteSemilatticeInf.toInfSet
β€”le_iSup_inf_iSup
iInf_sup_le_iInf_sup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
iInf
CompleteSemilatticeInf.toInfSet
β€”le_iInf
sup_le_sup_right
iInf_le
iSup_bool_eq πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
β€”iSup.eq_1
Bool.range_eq
sSup_pair
sup_comm
iSup_ge_eq_iSup_nat_add πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”le_antisymm
le_sSup
iSup_pos
iSup_iInf_ge_nat_add πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”biInf_mono
LE.le.trans
Monotone.iSup_nat_add
iInf_ge_eq_iInf_nat_add
iSup_inf_le_iSup_inf πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
β€”iInf_sup_le_iInf_sup
iSup_inf_le_inf_iSup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
β€”sup_iInf_le_iInf_sup
iSup_inf_le_inf_sSup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
Set.instMembership
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
SupSet.sSup
β€”sup_sInf_le_iInf_sup
iSup_inf_le_sSup_inf πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
Set.instMembership
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
SupSet.sSup
β€”sInf_sup_le_iInf_sup
iSup_nat_gt_zero_eq πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iInf_nat_gt_zero_eq
inf_eq_iInf πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”sup_eq_iSup
inf_iInf_nat_succ πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”sup_iSup_nat_succ
le_iSup_inf_iSup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
β€”le_inf
iSup_mono
inf_le_left
inf_le_right
sInf_sup_le_iInf_sup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
InfSet.sInf
CompleteSemilatticeInf.toInfSet
iInf
Set
Set.instMembership
β€”le_iInfβ‚‚
sup_le_sup_right
sInf_le
sup_biInf_le_biInf_sup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
iInf
CompleteSemilatticeInf.toInfSet
Set
Set.instMembership
β€”le_iInfβ‚‚
sup_le_sup_left
biInf_le
sup_eq_iSup πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup_bool_eq
sup_iInf_le_iInf_sup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
iInf
CompleteSemilatticeInf.toInfSet
β€”le_iInf
sup_le_sup_left
iInf_le
sup_iSup_nat_succ πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup_union
iSup_singleton
iSup_range
Nat.zero_union_range_succ
iSup_univ
sup_sInf_le_iInf_sup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
InfSet.sInf
CompleteSemilatticeInf.toInfSet
iInf
Set
Set.instMembership
β€”le_iInfβ‚‚
sup_le_sup_left
sInf_le

---

← Back to Index