Documentation Verification Report

MulticoequalizerDiagram

πŸ“ Source: Mathlib/Order/CompleteLattice/MulticoequalizerDiagram.lean

Statistics

MetricCount
DefinitionsMulticoequalizerDiagram, multicofork, multispanIndex, BicartSq, MulticoequalizerDiagram
5
Theoremseq_inf, iSup_eq, min_eq, multicofork_pt, multispanIndex_fst, multispanIndex_left, multispanIndex_right, multispanIndex_snd, commSq, inf_eq, le₁₂, le₁₃, leβ‚‚β‚„, le₃₄, max_eq, min_eq, multicoequalizerDiagram, sup_eq
18
Total23

CompleteLattice

Definitions

NameCategoryTheorems
MulticoequalizerDiagram πŸ“–CompData
1 mathmath: Lattice.BicartSq.multicoequalizerDiagram

CompleteLattice.MulticoequalizerDiagram

Definitions

NameCategoryTheorems
multicofork πŸ“–CompOp
1 mathmath: multicofork_pt
multispanIndex πŸ“–CompOp
19 mathmath: SSet.horn₃₁.desc.multicofork_Ο€_two, SSet.horn₃₂.desc.multicofork_Ο€_one, SSet.horn₃₁.desc.multicofork_pt, multispanIndex_right, multispanIndex_fst, SSet.horn₃₁.desc.multicofork_Ο€_two_assoc, SSet.horn₃₁.desc.multicofork_Ο€_zero_assoc, multispanIndex_left, SSet.horn₃₂.desc.multicofork_Ο€_zero_assoc, multispanIndex_snd, SSet.horn₃₁.desc.multicofork_Ο€_three_assoc, SSet.horn₃₁.desc.multicofork_Ο€_zero, SSet.horn₃₂.desc.multicofork_Ο€_three, multicofork_pt, SSet.horn₃₂.desc.multicofork_pt, SSet.horn₃₂.desc.multicofork_Ο€_zero, SSet.horn₃₂.desc.multicofork_Ο€_three_assoc, SSet.horn₃₂.desc.multicofork_Ο€_one_assoc, SSet.horn₃₁.desc.multicofork_Ο€_three

Theorems

NameKindAssumesProvesValidatesDepends On
eq_inf πŸ“–mathematicalCompleteLattice.MulticoequalizerDiagramSemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
β€”β€”
iSup_eq πŸ“–mathematicalCompleteLattice.MulticoequalizerDiagramiSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”β€”
min_eq πŸ“–mathematicalCompleteLattice.MulticoequalizerDiagramSemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
β€”eq_inf
multicofork_pt πŸ“–mathematicalCompleteLattice.MulticoequalizerDiagramCategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.Limits.MultispanIndex.multispan
multispanIndex
multicofork
β€”β€”
multispanIndex_fst πŸ“–mathematicalCompleteLattice.MulticoequalizerDiagramCategoryTheory.Limits.MultispanIndex.fst
CategoryTheory.Limits.MultispanShape.prod
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
multispanIndex
CategoryTheory.homOfLE
CategoryTheory.Limits.MultispanShape.fst
β€”β€”
multispanIndex_left πŸ“–mathematicalCompleteLattice.MulticoequalizerDiagramCategoryTheory.Limits.MultispanIndex.left
CategoryTheory.Limits.MultispanShape.prod
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
multispanIndex
β€”β€”
multispanIndex_right πŸ“–mathematicalCompleteLattice.MulticoequalizerDiagramCategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanShape.prod
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
multispanIndex
β€”β€”
multispanIndex_snd πŸ“–mathematicalCompleteLattice.MulticoequalizerDiagramCategoryTheory.Limits.MultispanIndex.snd
CategoryTheory.Limits.MultispanShape.prod
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
multispanIndex
CategoryTheory.homOfLE
CategoryTheory.Limits.MultispanShape.snd
β€”β€”

Lattice

Definitions

NameCategoryTheorems
BicartSq πŸ“–CompDataβ€”

Lattice.BicartSq

Theorems

NameKindAssumesProvesValidatesDepends On
commSq πŸ“–mathematicalLattice.BicartSqCategoryTheory.CommSq
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CategoryTheory.homOfLE
le₁₂
le₁₃
leβ‚‚β‚„
le₃₄
β€”le₁₂
le₁₃
leβ‚‚β‚„
le₃₄
inf_eq πŸ“–mathematicalLattice.BicartSqSemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”β€”
le₁₂ πŸ“–mathematicalLattice.BicartSqPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”β€”
le₁₃ πŸ“–mathematicalLattice.BicartSqPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”β€”
leβ‚‚β‚„ πŸ“–mathematicalLattice.BicartSqPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”β€”
le₃₄ πŸ“–mathematicalLattice.BicartSqPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”β€”
max_eq πŸ“–mathematicalLattice.BicartSqSemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sup_eq
min_eq πŸ“–mathematicalLattice.BicartSqSemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”inf_eq
multicoequalizerDiagram πŸ“–mathematicalLattice.BicartSq
CompleteLattice.toLattice
CompleteLattice.MulticoequalizerDiagramβ€”sup_eq
sup_comm
sup_eq_iSup
sup_eq πŸ“–mathematicalLattice.BicartSqSemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”β€”

SSet.Subcomplex

Definitions

NameCategoryTheorems
MulticoequalizerDiagram πŸ“–MathDef
1 mathmath: SSet.horn.multicoequalizerDiagram

---

← Back to Index