Documentation Verification Report

PiLex

📁 Source: Mathlib/Order/CompleteLattice/PiLex.lean

Statistics

MetricCount
DefinitionscompleteLattice, instCompleteLinearOrderColexForall, instInfSetColexForall, instSupSetColexForall, completeLattice, instCompleteLinearOrderLexForall, instInfSetLexForall, instSupSetLexForall
8
Theoremsle_sInf_apply, le_sSup_apply, sInf_apply, sInf_apply_le, sSup_apply, sSup_apply_le, le_sInf_apply, le_sSup_apply, sInf_apply, sInf_apply_le, sSup_apply, sSup_apply_le
12
Total20

Pi.Colex

Definitions

NameCategoryTheorems
completeLattice 📖CompOp
instCompleteLinearOrderColexForall 📖CompOp
instInfSetColexForall 📖CompOp
2 mathmath: le_sInf_apply, sInf_apply
instSupSetColexForall 📖CompOp
2 mathmath: sSup_apply, sSup_apply_le

Theorems

NameKindAssumesProvesValidatesDepends On
le_sInf_apply 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
InfSet.sInf
Colex
instInfSetColexForall
Pi.Lex.le_sInf_apply
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
le_sSup_apply 📖mathematicalColex
Set
Set.instMembership
SupSet.sSup
instSupSetColexForall
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Pi.Lex.le_sSup_apply
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
sInf_apply 📖mathematicalInfSet.sInf
Colex
instInfSetColexForall
iInf
Set.Elem
setOf
Set
Set.instMembership
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Pi.Lex.sInf_apply
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
sInf_apply_le 📖mathematicalColex
Set
Set.instMembership
InfSet.sInf
instInfSetColexForall
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Pi.Lex.sInf_apply_le
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
sSup_apply 📖mathematicalSupSet.sSup
Colex
instSupSetColexForall
iSup
Set.Elem
setOf
Set
Set.instMembership
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Pi.Lex.sSup_apply
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT
sSup_apply_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
SupSet.sSup
Colex
instSupSetColexForall
Pi.Lex.sSup_apply_le
IsWellOrder.toIsWellFounded
isWellOrder_lt
instWellFoundedLTOrderDualOfWellFoundedGT

Pi.Lex

Definitions

NameCategoryTheorems
completeLattice 📖CompOp
instCompleteLinearOrderLexForall 📖CompOp
instInfSetLexForall 📖CompOp
2 mathmath: sInf_apply, le_sInf_apply
instSupSetLexForall 📖CompOp
2 mathmath: sSup_apply_le, sSup_apply

Theorems

NameKindAssumesProvesValidatesDepends On
le_sInf_apply 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
InfSet.sInf
Lex
instInfSetLexForall
sInf_apply
le_sInf
le_sSup_apply 📖mathematicalLex
Set
Set.instMembership
SupSet.sSup
instSupSetLexForall
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
sInf_apply_le
sInf_apply 📖mathematicalInfSet.sInf
Lex
instInfSetLexForall
iInf
Set.Elem
setOf
Set
Set.instMembership
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
sInf_apply_le 📖mathematicalLex
Set
Set.instMembership
InfSet.sInf
instInfSetLexForall
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
sInf_apply
sInf_le
sSup_apply 📖mathematicalSupSet.sSup
Lex
instSupSetLexForall
iSup
Set.Elem
setOf
Set
Set.instMembership
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
sInf_apply
sSup_apply_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
SupSet.sSup
Lex
instSupSetLexForall
le_sInf_apply

---

← Back to Index