Documentation Verification Report

CompletePartialOrder

📁 Source: Mathlib/Order/CompletePartialOrder.lean

Statistics

MetricCount
DefinitionstoCompletePartialOrder, CompletePartialOrder, toOmegaCompletePartialOrder, toPartialOrder, toSupSet, instConditionallyCompletePartialOrderSupOfCompletePartialOrder
6
TheoremslubOfDirected, scottContinuous, iSup_le, le_iSup, isLUB_sSup, le_sSup, sSup_le
7
Total13

CompleteLattice

Definitions

NameCategoryTheorems
toCompletePartialOrder 📖CompOp
7 mathmath: MeasureTheory.isTightMeasureSet_iff_inner_tendsto, MeasureTheory.tendsto_measure_norm_gt_of_isTightMeasureSet, EMetric.pair_reduction, MeasureTheory.tendsto_measure_compl_closedBall_of_isTightMeasureSet, MeasureTheory.isTightMeasureSet_iff_tendsto_measure_norm_gt, PairReduction.iSup_edist_pairSet, MeasureTheory.isTightMeasureSet_iff_tendsto_measure_compl_closedBall

CompletePartialOrder

Definitions

NameCategoryTheorems
toOmegaCompletePartialOrder 📖CompOp
toPartialOrder 📖CompOp
1 mathmath: scottContinuous
toSupSet 📖CompOp
14 mathmath: MeasureTheory.isTightMeasureSet_iff_inner_tendsto, DirectedOn.isLUB_sSup, MeasureTheory.tendsto_measure_norm_gt_of_isTightMeasureSet, DirectedOn.sSup_le, Directed.iSup_le, EMetric.pair_reduction, scottContinuous, Directed.le_iSup, MeasureTheory.tendsto_measure_compl_closedBall_of_isTightMeasureSet, MeasureTheory.isTightMeasureSet_iff_tendsto_measure_norm_gt, lubOfDirected, PairReduction.iSup_edist_pairSet, MeasureTheory.isTightMeasureSet_iff_tendsto_measure_compl_closedBall, DirectedOn.le_sSup

Theorems

NameKindAssumesProvesValidatesDepends On
lubOfDirected 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
toPartialOrder
IsLUB
SupSet.sSup
toSupSet
scottContinuous 📖mathematicalScottContinuous
PartialOrder.toPreorder
toPartialOrder
IsLUB
Preorder.toLE
Set.image
SupSet.sSup
toSupSet
DirectedOn.isLUB_sSup
IsLUB.unique

Directed

Theorems

NameKindAssumesProvesValidatesDepends On
iSup_le 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
CompletePartialOrder.toPartialOrder
iSup
CompletePartialOrder.toSupSet
DirectedOn.sSup_le
directedOn_range
Set.forall_mem_range
le_iSup 📖mathematicalDirected
Preorder.toLE
PartialOrder.toPreorder
CompletePartialOrder.toPartialOrder
iSup
CompletePartialOrder.toSupSet
DirectedOn.le_sSup
directedOn_range
Set.mem_range_self

DirectedOn

Theorems

NameKindAssumesProvesValidatesDepends On
isLUB_sSup 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
CompletePartialOrder.toPartialOrder
IsLUB
SupSet.sSup
CompletePartialOrder.toSupSet
CompletePartialOrder.lubOfDirected
le_sSup 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
CompletePartialOrder.toPartialOrder
Set
Set.instMembership
SupSet.sSup
CompletePartialOrder.toSupSet
isLUB_sSup
sSup_le 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
CompletePartialOrder.toPartialOrder
SupSet.sSup
CompletePartialOrder.toSupSet
isLUB_sSup

(root)

Definitions

NameCategoryTheorems
CompletePartialOrder 📖CompData
instConditionallyCompletePartialOrderSupOfCompletePartialOrder 📖CompOp

---

← Back to Index