Documentation Verification Report

Concept

πŸ“ Source: Mathlib/Order/Concept.lean

Statistics

MetricCount
DefinitionsConcept, copy, extent, instBoundedOrderConcept, instCompleteLattice, instInfConcept, instInfSet, instInhabited, instLatticeConcept, instPartialOrder, instSemilatticeInfConcept, instSupConcept, instSupSet, intent, swap, swapEquiv, lowerPolar, upperPolar
18
Theoremscodisjoint_extent_intent, compl_extent, compl_intent, copy_eq, copy_extent, copy_intent, disjoint_extent_intent, ext, ext', ext_iff, extent_bot, extent_iInf, extent_iSup, extent_inf, extent_injective, extent_sInf, extent_sSup, extent_ssubset_extent_iff, extent_subset_extent_iff, extent_sup, extent_top, intent_bot, intent_iInf, intent_iSup, intent_inf, intent_injective, intent_sInf, intent_sSup, intent_ssubset_intent_iff, intent_subset_intent_iff, intent_sup, intent_top, isCompl_extent_intent, lowerPolar_intent, mem_extent_of_rel_extent, mem_intent_of_intent_rel, rel_extent_intent, strictAnti_intent, strictMono_extent, swapEquiv_apply, swapEquiv_symm_apply, swap_extent, swap_intent, swap_le_swap_iff, swap_lt_swap_iff, swap_swap, upperPolar_extent, gc_upperPolar_lowerPolar, lowerPolar_anti, lowerPolar_empty, lowerPolar_iUnion, lowerPolar_iUnionβ‚‚, lowerPolar_swap, lowerPolar_union, lowerPolar_upperPolar_lowerPolar, subset_lowerPolar_upperPolar, subset_upperPolar_iff_subset_lowerPolar, subset_upperPolar_lowerPolar, upperPolar_anti, upperPolar_empty, upperPolar_iUnion, upperPolar_iUnionβ‚‚, upperPolar_lowerPolar_upperPolar, upperPolar_swap, upperPolar_union
65
Total83

Concept

Definitions

NameCategoryTheorems
copy πŸ“–CompOp
3 mathmath: copy_extent, copy_eq, copy_intent
extent πŸ“–CompOp
25 mathmath: lowerPolar_intent, extent_sSup, swap_intent, extent_iInf, intent_iInf, intent_inf, isCompl_extent_intent, swap_extent, extent_injective, compl_intent, ext_iff, extent_iSup, codisjoint_extent_intent, extent_subset_extent_iff, intent_sInf, extent_sup, extent_top, extent_inf, strictMono_extent, extent_ssubset_extent_iff, compl_extent, upperPolar_extent, extent_bot, extent_sInf, disjoint_extent_intent
instBoundedOrderConcept πŸ“–CompOp
4 mathmath: intent_bot, intent_top, extent_top, extent_bot
instCompleteLattice πŸ“–CompOpβ€”
instInfConcept πŸ“–CompOp
2 mathmath: intent_inf, extent_inf
instInfSet πŸ“–CompOp
4 mathmath: extent_iInf, intent_iInf, intent_sInf, extent_sInf
instInhabited πŸ“–CompOpβ€”
instLatticeConcept πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
14 mathmath: intent_bot, intent_subset_intent_iff, swap_le_swap_iff, swapEquiv_apply, intent_ssubset_intent_iff, extent_subset_extent_iff, strictAnti_intent, swap_lt_swap_iff, intent_top, extent_top, strictMono_extent, swapEquiv_symm_apply, extent_ssubset_extent_iff, extent_bot
instSemilatticeInfConcept πŸ“–CompOpβ€”
instSupConcept πŸ“–CompOp
2 mathmath: intent_sup, extent_sup
instSupSet πŸ“–CompOp
4 mathmath: extent_sSup, intent_sSup, intent_iSup, extent_iSup
intent πŸ“–CompOp
24 mathmath: intent_bot, lowerPolar_intent, extent_sSup, swap_intent, intent_sSup, intent_iInf, intent_inf, isCompl_extent_intent, intent_subset_intent_iff, intent_iSup, swap_extent, compl_intent, extent_iSup, codisjoint_extent_intent, intent_sup, intent_ssubset_intent_iff, intent_sInf, extent_sup, strictAnti_intent, intent_top, compl_extent, upperPolar_extent, intent_injective, disjoint_extent_intent
swap πŸ“–CompOp
7 mathmath: swap_intent, swap_le_swap_iff, swap_extent, swap_swap, swapEquiv_apply, swap_lt_swap_iff, swapEquiv_symm_apply
swapEquiv πŸ“–CompOp
2 mathmath: swapEquiv_apply, swapEquiv_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_extent_intent πŸ“–mathematicalβ€”Codisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instOrderTop
extent
intent
β€”codisjoint_iff_le_sup
upperPolar_extent
Not.imp_symm
mem_extent_of_rel_extent
compl_extent πŸ“–mathematicalβ€”Compl.compl
Set
Set.instCompl
extent
intent
β€”IsCompl.compl_eq
isCompl_extent_intent
compl_intent πŸ“–mathematicalβ€”Compl.compl
Set
Set.instCompl
intent
extent
β€”IsCompl.compl_eq
IsCompl.symm
isCompl_extent_intent
copy_eq πŸ“–mathematicalextent
intent
copyβ€”ext
Set.ext
copy.congr_simp
copy_extent πŸ“–mathematicalextent
intent
copyβ€”β€”
copy_intent πŸ“–mathematicalextent
intent
copyβ€”β€”
disjoint_extent_intent πŸ“–mathematicalβ€”Disjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
extent
intent
β€”Set.disjoint_iff_forall_ne
irrefl
rel_extent_intent
ext πŸ“–β€”extentβ€”β€”β€”
ext' πŸ“–β€”intentβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”extentβ€”ext
extent_bot πŸ“–mathematicalβ€”extent
Bot.bot
Concept
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
BoundedOrder.toOrderBot
instBoundedOrderConcept
lowerPolar
Set.univ
β€”β€”
extent_iInf πŸ“–mathematicalβ€”extent
iInf
Concept
instInfSet
Set.iInter
β€”iInf_range
extent_iSup πŸ“–mathematicalβ€”extent
iSup
Concept
instSupSet
lowerPolar
Set.iInter
intent
β€”iInf_range
extent_inf πŸ“–mathematicalβ€”extent
Concept
instInfConcept
Set
Set.instInter
β€”β€”
extent_injective πŸ“–mathematicalβ€”Concept
Set
extent
β€”ext
extent_sInf πŸ“–mathematicalβ€”extent
InfSet.sInf
Concept
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
extent_sSup πŸ“–mathematicalβ€”extent
SupSet.sSup
Concept
instSupSet
lowerPolar
Set.iInter
Set
Set.instMembership
intent
β€”β€”
extent_ssubset_extent_iff πŸ“–mathematicalβ€”Set
Set.instHasSSubset
extent
Concept
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”β€”
extent_subset_extent_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
extent
Concept
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”β€”
extent_sup πŸ“–mathematicalβ€”extent
Concept
instSupConcept
lowerPolar
Set
Set.instInter
intent
β€”β€”
extent_top πŸ“–mathematicalβ€”extent
Top.top
Concept
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
BoundedOrder.toOrderTop
instBoundedOrderConcept
Set.univ
β€”β€”
intent_bot πŸ“–mathematicalβ€”intent
Bot.bot
Concept
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
BoundedOrder.toOrderBot
instBoundedOrderConcept
Set.univ
β€”β€”
intent_iInf πŸ“–mathematicalβ€”intent
iInf
Concept
instInfSet
upperPolar
Set.iInter
extent
β€”iInf_range
intent_iSup πŸ“–mathematicalβ€”intent
iSup
Concept
instSupSet
Set.iInter
β€”iInf_range
intent_inf πŸ“–mathematicalβ€”intent
Concept
instInfConcept
upperPolar
Set
Set.instInter
extent
β€”β€”
intent_injective πŸ“–mathematicalβ€”Concept
Set
intent
β€”ext'
intent_sInf πŸ“–mathematicalβ€”intent
InfSet.sInf
Concept
instInfSet
upperPolar
Set.iInter
Set
Set.instMembership
extent
β€”β€”
intent_sSup πŸ“–mathematicalβ€”intent
SupSet.sSup
Concept
instSupSet
Set.iInter
Set
Set.instMembership
β€”β€”
intent_ssubset_intent_iff πŸ“–mathematicalβ€”Set
Set.instHasSSubset
intent
Concept
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”ssubset_iff_subset_not_subset
Set.instIsNonstrictStrictOrderSubsetSSubset
lt_iff_le_not_ge
intent_subset_intent_iff
intent_subset_intent_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
intent
Concept
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”extent_subset_extent_iff
lowerPolar_intent
lowerPolar_anti
upperPolar_extent
upperPolar_anti
intent_sup πŸ“–mathematicalβ€”intent
Concept
instSupConcept
Set
Set.instInter
β€”β€”
intent_top πŸ“–mathematicalβ€”intent
Top.top
Concept
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
BoundedOrder.toOrderTop
instBoundedOrderConcept
upperPolar
Set.univ
β€”β€”
isCompl_extent_intent πŸ“–mathematicalβ€”IsCompl
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instBoundedOrder
extent
intent
β€”disjoint_extent_intent
IsStrictOrder.toIrrefl
IsStrictTotalOrder.toIsStrictOrder
codisjoint_extent_intent
IsStrictTotalOrder.toTrichotomous
IsStrictOrder.toIsTrans
lowerPolar_intent πŸ“–mathematicalβ€”lowerPolar
intent
extent
β€”β€”
mem_extent_of_rel_extent πŸ“–β€”Set
Set.instMembership
extent
β€”β€”lowerPolar_intent
trans
rel_extent_intent
mem_intent_of_intent_rel πŸ“–β€”Set
Set.instMembership
intent
β€”β€”upperPolar_extent
trans
rel_extent_intent
rel_extent_intent πŸ“–β€”Set
Set.instMembership
extent
intent
β€”β€”upperPolar_extent
strictAnti_intent πŸ“–mathematicalβ€”StrictAnti
Concept
Set
PartialOrder.toPreorder
instPartialOrder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
intent
β€”intent_ssubset_intent_iff
strictMono_extent πŸ“–mathematicalβ€”StrictMono
Concept
Set
PartialOrder.toPreorder
instPartialOrder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
extent
β€”extent_ssubset_extent_iff
swapEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
OrderDual
Concept
Function.swap
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RelIso.instFunLike
swapEquiv
swap
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”β€”
swapEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Concept
Function.swap
OrderDual
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
OrderDual.instLE
RelIso.instFunLike
RelIso.symm
swapEquiv
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
swap
β€”β€”
swap_extent πŸ“–mathematicalβ€”extent
Function.swap
swap
intent
β€”β€”
swap_intent πŸ“–mathematicalβ€”intent
Function.swap
swap
extent
β€”β€”
swap_le_swap_iff πŸ“–mathematicalβ€”Concept
Function.swap
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
swap
β€”intent_subset_intent_iff
swap_lt_swap_iff πŸ“–mathematicalβ€”Concept
Function.swap
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
swap
β€”intent_ssubset_intent_iff
swap_swap πŸ“–mathematicalβ€”swap
Function.swap
β€”ext
upperPolar_extent πŸ“–mathematicalβ€”upperPolar
extent
intent
β€”β€”

(root)

Definitions

NameCategoryTheorems
Concept πŸ“–CompData
28 mathmath: Concept.intent_bot, Concept.extent_sSup, Concept.extent_iInf, Concept.intent_sSup, Concept.intent_iInf, Concept.intent_inf, Concept.intent_subset_intent_iff, Concept.intent_iSup, Concept.swap_le_swap_iff, Concept.extent_injective, Concept.extent_iSup, Concept.swapEquiv_apply, Concept.intent_sup, Concept.intent_ssubset_intent_iff, Concept.extent_subset_extent_iff, Concept.intent_sInf, Concept.extent_sup, Concept.strictAnti_intent, Concept.swap_lt_swap_iff, Concept.intent_top, Concept.extent_top, Concept.extent_inf, Concept.strictMono_extent, Concept.swapEquiv_symm_apply, Concept.extent_ssubset_extent_iff, Concept.extent_bot, Concept.extent_sInf, Concept.intent_injective
lowerPolar πŸ“–CompOp
18 mathmath: lowerPolar_swap, lowerPolar_union, Concept.lowerPolar_intent, Concept.extent_sSup, lowerPolar_anti, lowerPolar_iUnionβ‚‚, subset_upperPolar_lowerPolar, gc_upperPolar_lowerPolar, lowerPolar_empty, subset_lowerPolar_upperPolar, upperPolar_lowerPolar_upperPolar, Concept.extent_iSup, lowerPolar_iUnion, Concept.extent_sup, lowerPolar_upperPolar_lowerPolar, upperPolar_swap, Concept.extent_bot, subset_upperPolar_iff_subset_lowerPolar
upperPolar πŸ“–CompOp
18 mathmath: lowerPolar_swap, subset_upperPolar_lowerPolar, Concept.intent_iInf, Concept.intent_inf, gc_upperPolar_lowerPolar, upperPolar_union, upperPolar_empty, subset_lowerPolar_upperPolar, upperPolar_lowerPolar_upperPolar, Concept.intent_sInf, upperPolar_iUnionβ‚‚, Concept.intent_top, lowerPolar_upperPolar_lowerPolar, upperPolar_anti, upperPolar_swap, Concept.upperPolar_extent, subset_upperPolar_iff_subset_lowerPolar, upperPolar_iUnion

Theorems

NameKindAssumesProvesValidatesDepends On
gc_upperPolar_lowerPolar πŸ“–mathematicalβ€”GaloisConnection
Set
OrderDual
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
upperPolar
lowerPolar
OrderDual.ofDual
β€”subset_upperPolar_iff_subset_lowerPolar
lowerPolar_anti πŸ“–mathematicalβ€”Antitone
Set
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lowerPolar
β€”upperPolar_anti
lowerPolar_empty πŸ“–mathematicalβ€”lowerPolar
Set
Set.instEmptyCollection
Set.univ
β€”upperPolar_empty
lowerPolar_iUnion πŸ“–mathematicalβ€”lowerPolar
Set.iUnion
Set.iInter
β€”upperPolar_iUnion
lowerPolar_iUnionβ‚‚ πŸ“–mathematicalβ€”lowerPolar
Set.iUnion
Set.iInter
β€”upperPolar_iUnionβ‚‚
lowerPolar_swap πŸ“–mathematicalβ€”lowerPolar
Function.swap
upperPolar
β€”β€”
lowerPolar_union πŸ“–mathematicalβ€”lowerPolar
Set
Set.instUnion
Set.instInter
β€”upperPolar_union
lowerPolar_upperPolar_lowerPolar πŸ“–mathematicalβ€”lowerPolar
upperPolar
β€”upperPolar_lowerPolar_upperPolar
subset_lowerPolar_upperPolar πŸ“–mathematicalβ€”Set
Set.instHasSubset
lowerPolar
upperPolar
β€”GaloisConnection.le_u_l
gc_upperPolar_lowerPolar
subset_upperPolar_iff_subset_lowerPolar πŸ“–mathematicalβ€”Set
Set.instHasSubset
upperPolar
lowerPolar
β€”β€”
subset_upperPolar_lowerPolar πŸ“–mathematicalβ€”Set
Set.instHasSubset
upperPolar
lowerPolar
β€”subset_lowerPolar_upperPolar
upperPolar_anti πŸ“–mathematicalβ€”Antitone
Set
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
upperPolar
β€”GaloisConnection.monotone_l
gc_upperPolar_lowerPolar
upperPolar_empty πŸ“–mathematicalβ€”upperPolar
Set
Set.instEmptyCollection
Set.univ
β€”Set.eq_univ_of_forall
upperPolar_iUnion πŸ“–mathematicalβ€”upperPolar
Set.iUnion
Set.iInter
β€”GaloisConnection.l_iSup
gc_upperPolar_lowerPolar
upperPolar_iUnionβ‚‚ πŸ“–mathematicalβ€”upperPolar
Set.iUnion
Set.iInter
β€”GaloisConnection.l_iSupβ‚‚
gc_upperPolar_lowerPolar
upperPolar_lowerPolar_upperPolar πŸ“–mathematicalβ€”upperPolar
lowerPolar
β€”GaloisConnection.l_u_l_eq_l
gc_upperPolar_lowerPolar
upperPolar_swap πŸ“–mathematicalβ€”upperPolar
Function.swap
lowerPolar
β€”β€”
upperPolar_union πŸ“–mathematicalβ€”upperPolar
Set
Set.instUnion
Set.instInter
β€”Set.ext
forallβ‚‚_or_left

---

← Back to Index