Documentation Verification Report

Finset

📁 Source: Mathlib/Order/ConditionallyCompleteLattice/Finset.lean

Statistics

MetricCount
Definitions0
TheoremsciInf_le, le_ciSup, ciSup_eq_max'_image, ciSup_mem_image, csInf_eq_min', csInf_mem, csSup_eq_max', csSup_mem, ciInf_eq_min'_image, ciInf_mem_image, ciSup_eq_max'_image, ciSup_mem_image, inf'_eq_csInf_image, inf'_id_eq_csInf, inf'_univ_eq_ciInf, sup'_eq_csSup_image, sup'_id_eq_csSup, sup'_univ_eq_ciSup, sup_univ_eq_ciSup, iInf_mem_map_of_exists_le_sInf_empty, iSup_mem_map_of_exists_sSup_empty_le, iSup_mem_map_of_ne_nil, iInf_mem_map_of_exists_le_sInf_empty, iSup_mem_map_of_exists_sSup_empty_le, iSup_mem_map_of_ne_zero, ciInf_mem_image, ciSup_lt_iff, ciSup_mem_image, csSup_lt_iff, lt_ciInf_iff, lt_csInf_iff, ciSup_lt_iff, ciSup_mem_image, csInf_mem, csSup_mem, exists_eq_ciInf_of_finite, exists_eq_ciSup_of_finite
37
Total37

Finite

Theorems

NameKindAssumesProvesValidatesDepends On
ciInf_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
le_ciSup
le_ciSup 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Finset.mem_univ
Finset.le_sup'
le_ciSup

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
ciInf_eq_min'_image 📖mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instEmptyCollection
Nonempty
image
LinearOrder.toDecidableEq
ConditionallyCompleteLinearOrder.toLinearOrder
iInf
min'
Nonempty.image
toDual_min'
toDual_iInf
image_nonempty
ciSup_eq_max'_image
image_image
max'.congr_simp
ciInf_mem_image 📖mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instEmptyCollection
image
LinearOrder.toDecidableEq
ConditionallyCompleteLinearOrder.toLinearOrder
iInf
image_nonempty
ciInf_eq_min'_image
min'_mem
ciSup_eq_max'_image 📖mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instEmptyCollection
Nonempty
image
LinearOrder.toDecidableEq
ConditionallyCompleteLinearOrder.toLinearOrder
iSup
max'
iSup.eq_1
Nonempty.csSup_eq_max'
coe_image
csSup_eq_csSup_of_forall_exists_le
ciSup_eq_ite
le_rfl
ciSup_mem_image 📖mathematicalFinset
instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instEmptyCollection
image
LinearOrder.toDecidableEq
ConditionallyCompleteLinearOrder.toLinearOrder
iSup
image_nonempty
ciSup_eq_max'_image
max'_mem
inf'_eq_csInf_image 📖mathematicalNonemptyinf'
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
SetLike.coe
Finset
instSetLike
sup'_eq_csSup_image
inf'_id_eq_csInf 📖mathematicalNonemptyinf'
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
SetLike.coe
Finset
instSetLike
sup'_id_eq_csSup
inf'_univ_eq_ciInf 📖mathematicalinf'
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
univ
univ_nonempty
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
univ_nonempty
inf'_eq_csInf_image
coe_univ
Set.image_univ
sup'_eq_csSup_image 📖mathematicalNonemptysup'
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
SetLike.coe
Finset
instSetLike
eq_of_forall_ge_iff
csSup_le_iff
Set.Finite.bddAbove
SemilatticeSup.instIsDirectedOrder
supSet_to_nonempty
Set.Finite.image
finite_toSet
Set.Nonempty.image
Nonempty.to_set
sup'_id_eq_csSup 📖mathematicalNonemptysup'
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
SetLike.coe
Finset
instSetLike
sup'_eq_csSup_image
Set.image_id
sup'_univ_eq_ciSup 📖mathematicalsup'
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
univ
univ_nonempty
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
univ_nonempty
sup'_eq_csSup_image
coe_univ
Set.image_univ
sup_univ_eq_ciSup 📖mathematicalsup
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
ConditionallyCompleteLinearOrderBot.toOrderBot
univ
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
le_antisymm
sup_le
le_ciSup
Set.Finite.bddAbove
SemilatticeSup.instIsDirectedOrder
bot_nonempty
Set.finite_range
Finite.of_fintype
ciSup_le'
le_sup
mem_univ

Finset.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
ciSup_eq_max'_image 📖mathematicalFinset.Nonempty
Finset.image
LinearOrder.toDecidableEq
ConditionallyCompleteLinearOrder.toLinearOrder
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
image
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Finset
Finset.instMembership
Finset.max'
Finset.ciSup_eq_max'_image
csSup_empty
ciSup_mem_image 📖mathematicalFinset.NonemptyFinset
Finset.instMembership
Finset.image
LinearOrder.toDecidableEq
ConditionallyCompleteLinearOrder.toLinearOrder
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Finset.ciSup_mem_image
csSup_empty
csInf_eq_min' 📖mathematicalFinset.NonemptyInfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SetLike.coe
Finset
Finset.instSetLike
Finset.min'
ConditionallyCompleteLinearOrder.toLinearOrder
csSup_eq_max'
csInf_mem 📖mathematicalFinset.NonemptyFinset
Finset.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SetLike.coe
Finset.instSetLike
csSup_mem
csSup_eq_max' 📖mathematicalFinset.NonemptySupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SetLike.coe
Finset
Finset.instSetLike
Finset.max'
ConditionallyCompleteLinearOrder.toLinearOrder
eq_of_forall_ge_iff
csSup_le_iff
Finset.bddAbove
supSet_to_nonempty
to_set
Finset.max'_le_iff
csSup_mem 📖mathematicalFinset.NonemptyFinset
Finset.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SetLike.coe
Finset.instSetLike
csSup_eq_max'
Finset.max'_mem

List

Theorems

NameKindAssumesProvesValidatesDepends On
iInf_mem_map_of_exists_le_sInf_empty 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instEmptyCollection
iInfiInf_congr_Prop
Finset.ciInf_mem_image
iSup_mem_map_of_exists_sSup_empty_le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instEmptyCollection
iSupiSup_congr_Prop
Finset.ciSup_mem_image
iSup_mem_map_of_ne_nil 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iSup_mem_map_of_exists_sSup_empty_le
csSup_empty

Multiset

Theorems

NameKindAssumesProvesValidatesDepends On
iInf_mem_map_of_exists_le_sInf_empty 📖mathematicalMultiset
instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instEmptyCollection
map
iInf
iInf_congr_Prop
Finset.ciInf_mem_image
iSup_mem_map_of_exists_sSup_empty_le 📖mathematicalMultiset
instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instEmptyCollection
map
iSup
iSup_congr_Prop
Finset.ciSup_mem_image
iSup_mem_map_of_ne_zero 📖mathematicalMultiset
instMembership
map
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iSup_mem_map_of_exists_sSup_empty_le
csSup_empty
exists_mem_of_ne_zero

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
ciInf_mem_image 📖mathematicalSet
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.instEmptyCollection
Set.image
iInf
CanLift.prf
Set.instCanLiftFinsetCoeFinite
iInf_congr_Prop
Finset.ciInf_mem_image
ciSup_lt_iff 📖mathematicalSet
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.instEmptyCollection
Preorder.toLT
iSup
LT.lt.trans_le'
le_csSup
bddAbove
SemilatticeSup.instIsDirectedOrder
supSet_to_nonempty
subset
union
image
Set.finite_singleton
ciSup_eq_ite
Set.union_singleton
iSup_congr_Prop
ciSup_unique
ciSup_mem_image
ciSup_mem_image 📖mathematicalSet
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.instEmptyCollection
Set.image
iSup
CanLift.prf
Set.instCanLiftFinsetCoeFinite
iSup_congr_Prop
Finset.ciSup_mem_image
csSup_lt_iff 📖mathematicalSet.NonemptyPreorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
LE.le.trans_lt
le_csSup
bddAbove
SemilatticeSup.instIsDirectedOrder
supSet_to_nonempty
Set.Nonempty.csSup_mem
lt_ciInf_iff 📖mathematicalSet
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.instEmptyCollection
Preorder.toLT
iInf
LT.lt.trans_le
csInf_le
bddBelow
SemilatticeInf.instIsCodirectedOrder
supSet_to_nonempty
subset
union
image
Set.finite_singleton
ciInf_eq_ite
Set.union_singleton
iInf_congr_Prop
ciInf_unique
ciInf_mem_image
lt_csInf_iff 📖mathematicalSet.NonemptyPreorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
csSup_lt_iff

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
ciSup_lt_iff 📖mathematicalSet.NonemptyPreorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
Set.Finite.ciSup_lt_iff
csSup_empty
ciSup_mem_image 📖mathematicalSet.NonemptySet
Set.instMembership
Set.image
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Set.Finite.ciSup_mem_image
csSup_empty
csInf_mem 📖mathematicalSet.NonemptySet
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
csSup_mem
csSup_mem 📖mathematicalSet.NonemptySet
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
CanLift.prf
Set.instCanLiftFinsetCoeFinite
Finset.Nonempty.csSup_mem

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_ciInf_of_finite 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.Nonempty.csInf_mem
Set.range_nonempty
Set.finite_range
exists_eq_ciSup_of_finite 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.Nonempty.csSup_mem
Set.range_nonempty
Set.finite_range

---

← Back to Index