Documentation Verification Report

Indexed

πŸ“ Source: Mathlib/Order/ConditionallyCompleteLattice/Indexed.lean

Statistics

MetricCount
Definitions0
Theoremsl_ciSup, l_ciSup_set, l_csSup, l_csSup', u_ciInf, u_ciInf_set, u_csInf, u_csInf', ciInf_eq, ciInf_set_eq, ciSup_eq, ciSup_set_eq, map_ciInf, map_ciInf_set, map_ciSup, map_ciSup', map_ciSup_set, map_csInf, map_csInf', map_csSup, map_csSup', Ici_ciSup, Iic_ciInf, ciSup_empty, coe_biInf, coe_biSup, coe_iInf, coe_iSup, coe_iInf, coe_iSup, iInf_coe_eq_top, iInf_coe_lt_top, iInf_empty, iSup_coe_eq_top, iSup_coe_lt_top, cbiInf_eq_of_not_forall, cbiSup_eq_of_not_forall, ciInf_eq_bot_of_bot_mem, ciInf_eq_of_forall_ge_of_forall_gt_exists_lt, ciInf_eq_top_of_top_mem, ciInf_image, ciInf_le, ciInf_le', ciInf_le_ciSup, ciInf_le_of_le, ciInf_le_of_le', ciInf_lt_iff, ciInf_mem, ciInf_mono, ciInf_set_le, ciInf_subtype, ciInf_subtype', ciInf_subtype'', ciSup_eq_of_forall_le_of_forall_lt_exists_gt, ciSup_false, ciSup_image, ciSup_le, ciSup_le', ciSup_le_iff, ciSup_le_iff', ciSup_mono, ciSup_mono', ciSup_of_empty, ciSup_or', ciSup_set_le_iff, ciSup_subtype, ciSup_subtype', ciSup_subtype'', csInf_image, csSup_image, exists_lt_of_ciInf_lt, exists_lt_of_lt_ciSup, exists_lt_of_lt_ciSup', isGLB_ciInf, isGLB_ciInf_set, isLUB_ciSup, isLUB_ciSup_set, le_ciInf, le_ciInf_iff, le_ciInf_iff', le_ciInf_set_iff, le_ciSup, le_ciSup_iff', le_ciSup_of_le, le_ciSup_set, lt_ciSup_iff, lt_ciSup_iff'
87
Total87

GaloisConnection

Theorems

NameKindAssumesProvesValidatesDepends On
l_ciSup πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddAbove
Preorder.toLE
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”iSup.eq_1
l_csSup
Set.range_nonempty
iSup_range'
l_ciSup_set πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddAbove
Preorder.toLE
Set.image
Set.Nonempty
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
β€”l_ciSup
Set.Nonempty.to_subtype
Set.image_eq_range
l_csSup πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
BddAbove
Preorder.toLE
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup
Set.Elem
Set
Set.instMembership
β€”IsLUB.ciSup_set_eq
isLUB_l_image
isLUB_csSup
l_csSup' πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
BddAbove
Preorder.toLE
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
β€”l_csSup
sSup_image'
u_ciInf πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddBelow
Preorder.toLE
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”l_ciSup
dual
u_ciInf_set πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddBelow
Preorder.toLE
Set.image
Set.Nonempty
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
β€”l_ciSup_set
dual
u_csInf πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
BddBelow
Preorder.toLE
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iInf
Set.Elem
Set
Set.instMembership
β€”l_csSup
dual
u_csInf' πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.Nonempty
BddBelow
Preorder.toLE
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.image
β€”l_csSup'
dual

IsGLB

Theorems

NameKindAssumesProvesValidatesDepends On
ciInf_eq πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”csInf_eq
Set.range_nonempty
ciInf_set_eq πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set.Nonempty
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
β€”csInf_eq
Set.image_eq_range
Set.Nonempty.image

IsLUB

Theorems

NameKindAssumesProvesValidatesDepends On
ciSup_eq πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”csSup_eq
Set.range_nonempty
ciSup_set_eq πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set.Nonempty
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
β€”csSup_eq
Set.image_eq_range
Set.Nonempty.image

OrderIso

Theorems

NameKindAssumesProvesValidatesDepends On
map_ciInf πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
DFunLike.coe
OrderIso
instFunLikeOrderIso
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”map_ciSup
map_ciInf_set πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set.Nonempty
DFunLike.coe
OrderIso
instFunLikeOrderIso
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
β€”map_ciSup_set
map_ciSup πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
DFunLike.coe
OrderIso
instFunLikeOrderIso
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”GaloisConnection.l_ciSup
to_galoisConnection
map_ciSup' πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instFunLikeOrderIso
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”isEmpty_or_nonempty
ciSup_of_empty
map_bot
map_ciSup
Function.Surjective.forall
surjective
ciSup_of_not_bddAbove
csSup_empty
map_ciSup_set πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set.Nonempty
DFunLike.coe
OrderIso
instFunLikeOrderIso
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
β€”GaloisConnection.l_ciSup_set
to_galoisConnection
map_csInf πŸ“–mathematicalSet.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
DFunLike.coe
OrderIso
instFunLikeOrderIso
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iInf
Set.Elem
Set
Set.instMembership
β€”map_csSup
map_csInf' πŸ“–mathematicalSet.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
DFunLike.coe
OrderIso
instFunLikeOrderIso
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.image
β€”map_csSup'
map_csSup πŸ“–mathematicalSet.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
DFunLike.coe
OrderIso
instFunLikeOrderIso
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup
Set.Elem
Set
Set.instMembership
β€”GaloisConnection.l_csSup
to_galoisConnection
map_csSup' πŸ“–mathematicalSet.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
DFunLike.coe
OrderIso
instFunLikeOrderIso
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.image
β€”GaloisConnection.l_csSup'
to_galoisConnection

Set

Theorems

NameKindAssumesProvesValidatesDepends On
Ici_ciSup πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
range
Ici
iSup
ConditionallyCompletePartialOrderSup.toSupSet
iInter
β€”Iic_ciInf
Iic_ciInf πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
range
Iic
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iInter
β€”ext
le_ciInf_iff

WithBot

Theorems

NameKindAssumesProvesValidatesDepends On
ciSup_empty πŸ“–mathematicalβ€”iSup
WithBot
instSupSet
Bot.bot
bot
β€”WithTop.iInf_empty
coe_biInf πŸ“–mathematicalβ€”some
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Set
Set.instMembership
WithBot
instInfSet
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
β€”le_antisymm
biInf_le
LE.le.trans_eq
le_iInf_iff
iInf_pos
iInf_neg
coe_iInf
OrderBot.bddBelow
coe_biSup πŸ“–mathematicalSet.Nonemptysome
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Set
Set.instMembership
WithBot
instSupSet
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
β€”le_antisymm
Eq.trans_le
coe_iSup
OrderTop.bddAbove
iSup_le_iff
iSup_pos
le_biSup
iSup_neg
le_trans
coe_le_coe
coe_iInf πŸ“–mathematicalBddBelow
Preorder.toLE
Set.range
some
iInf
WithBot
instInfSet
β€”WithTop.coe_iSup
coe_iSup πŸ“–mathematicalBddAbove
Preorder.toLE
Set.range
some
iSup
WithBot
instSupSet
β€”WithTop.coe_iInf

WithTop

Theorems

NameKindAssumesProvesValidatesDepends On
coe_iInf πŸ“–mathematicalBddBelow
Preorder.toLE
Set.range
some
iInf
WithTop
instInfSet
β€”iInf.eq_1
coe_sInf'
Set.range_nonempty
Set.range_comp
coe_iSup πŸ“–mathematicalBddAbove
Preorder.toLE
Set.range
some
iSup
WithTop
instSupSet
β€”iSup.eq_1
coe_sSup'
Set.range_comp
iInf_coe_eq_top πŸ“–mathematicalβ€”iInf
WithTop
instInfSet
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
some
Top.top
top
IsEmpty
β€”β€”
iInf_coe_lt_top πŸ“–mathematicalβ€”WithTop
Preorder.toLT
instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iInf
instInfSet
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
some
Top.top
top
β€”lt_top_iff_ne_top
iInf_coe_eq_top
not_isEmpty_iff
iInf_empty πŸ“–mathematicalβ€”iInf
WithTop
instInfSet
Top.top
top
β€”iInf.eq_1
Set.range_eq_empty
sInf_empty
iSup_coe_eq_top πŸ“–mathematicalβ€”iSup
WithTop
instSupSet
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
ConditionallyCompletePartialOrderSup.toSupSet
some
Top.top
top
BddAbove
Preorder.toLE
Set.range
β€”iSup_eq_top
not_bddAbove_iff
coe_lt_top
coe_lt_coe
LT.lt.ne
coe_untop
iSup_coe_lt_top πŸ“–mathematicalβ€”WithTop
Preorder.toLT
instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iSup
instSupSet
ConditionallyCompletePartialOrderSup.toSupSet
some
Top.top
top
BddAbove
Preorder.toLE
Set.range
β€”lt_top_iff_ne_top
Iff.not_left
iSup_coe_eq_top

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cbiInf_eq_of_not_forall πŸ“–mathematicalβ€”iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
InfSet.sInf
Set
Set.instEmptyCollection
β€”cbiSup_eq_of_not_forall
cbiSup_eq_of_not_forall πŸ“–mathematicalβ€”iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
SupSet.sSup
Set
Set.instEmptyCollection
β€”ciSup_eq_ite
Set.mem_range_self
le_antisymm
ciSup_le
le_ciSup
sup_le
isEmpty_or_nonempty
iSup_of_empty'
csSup_of_not_bddAbove
sup_of_le_left
Mathlib.Tactic.Contrapose.contraposeβ‚„
BddAbove.mono
Subtype.coe_eta
ciInf_eq_bot_of_bot_mem πŸ“–mathematicalSet
Set.instMembership
Set.range
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”csInf_eq_bot_of_bot_mem
ciInf_eq_of_forall_ge_of_forall_gt_exists_lt πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Preorder.toLT
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”ciSup_eq_of_forall_le_of_forall_lt_exists_gt
ciInf_eq_top_of_top_mem πŸ“–mathematicalSet
Set.instMembership
Set.range
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”csSup_eq_top_of_top_mem
ciInf_image πŸ“–mathematicalSet.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
Set.Elem
Set
Set.instMembership
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
InfSet.sInf
Set.instEmptyCollection
Set.imageβ€”ciSup_image
ciInf_le πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”le_ciSup
ciInf_le' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”ciInf_le
OrderBot.bddBelow
ciInf_le_ciSup πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
BddAbove
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”LE.le.trans
ciInf_le
le_ciSup
ciInf_le_of_le πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”le_ciSup_of_le
ciInf_le_of_le' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”ciInf_le_of_le
OrderBot.bddBelow
ciInf_lt_iff πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.range
Preorder.toLT
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”csInf_lt_iff
Set.range_nonempty
ciInf_mem πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
β€”csInf_mem
Set.range_nonempty
ciInf_mono πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”ciSup_mono
ciInf_set_le πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set
Set.instMembership
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”le_ciSup_set
ciInf_subtype πŸ“–β€”BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
InfSet.sInf
Set
Set.instEmptyCollection
β€”β€”ciSup_subtype
ciInf_subtype' πŸ“–β€”BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
Subtype.prop
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
InfSet.sInf
Set
Set.instEmptyCollection
β€”β€”Subtype.prop
ciInf_subtype
ciInf_subtype'' πŸ“–β€”Set.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
Set.Elem
Set
Set.instMembership
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
InfSet.sInf
Set.instEmptyCollection
β€”β€”ciInf_subtype
Set.Nonempty.to_subtype
ciSup_eq_of_forall_le_of_forall_lt_exists_gt πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Preorder.toLT
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”csSup_eq_of_forall_le_of_forall_lt_exists_gt
Set.range_nonempty
Set.forall_mem_range
Set.exists_range_iff
ciSup_false πŸ“–mathematicalβ€”iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrderBot.toOrderBot
β€”ciSup_of_empty
instIsEmptyFalse
ciSup_image πŸ“–mathematicalSet.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
Set.Elem
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.instEmptyCollection
iSup
Set.imageβ€”LE.le.trans
Set.Nonempty.to_subtype
ciSup_le
Set.mem_image_of_mem
le_ciSup_set
Subtype.prop
csSup_image
Set.image_comp
ciSup_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”csSup_le
Set.range_nonempty
Set.forall_mem_range
ciSup_le' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”csSup_le'
Set.forall_mem_range
ciSup_le_iff πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”isLUB_le_iff
isLUB_ciSup
Set.forall_mem_range
ciSup_le_iff' πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”csSup_le_iff'
Set.forall_mem_range
ciSup_mono πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”isEmpty_or_nonempty
iSup_of_empty'
le_refl
ciSup_le
le_ciSup_of_le
ciSup_mono' πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”ciSup_le'
le_ciSup_of_le
ciSup_of_empty πŸ“–mathematicalβ€”iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrderBot.toOrderBot
β€”iSup_of_empty'
csSup_empty
ciSup_or' πŸ“–mathematicalβ€”iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
β€”iSup_congr_Prop
ciSup_unique
max_self
ciSup_of_empty
instIsEmptyFalse
sup_of_le_left
sup_of_le_right
ciSup_set_le_iff πŸ“–mathematicalSet.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
β€”isLUB_le_iff
isLUB_ciSup_set
Set.forall_mem_image
ciSup_subtype πŸ“–β€”BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instEmptyCollection
iSup
β€”β€”le_antisymm
ciSup_le
iSup_congr_Prop
ciSup_unique
le_ciSup
ciSup_eq_ite
BddAbove.mono
Set.union_singleton
BddAbove.union
SemilatticeSup.instIsDirectedOrder
bddAbove_singleton
ciSup_subtype' πŸ“–β€”BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
Subtype.prop
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instEmptyCollection
iSup
β€”β€”Subtype.prop
ciSup_subtype
ciSup_subtype'' πŸ“–β€”Set.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
Set.Elem
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.instEmptyCollection
iSup
β€”β€”ciSup_subtype
Set.Nonempty.to_subtype
csInf_image πŸ“–mathematicalSet.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
Set.Elem
Set
Set.instMembership
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
InfSet.sInf
Set.instEmptyCollection
Set.imageβ€”csSup_image
csSup_image πŸ“–mathematicalSet.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
Set.Elem
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.instEmptyCollection
iSup
Set.imageβ€”ciSup_subtype''
iSup.eq_1
Set.image_eq_range
exists_lt_of_ciInf_lt πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”β€”exists_lt_of_lt_ciSup
exists_lt_of_lt_ciSup πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”β€”exists_lt_of_lt_csSup
Set.range_nonempty
exists_lt_of_lt_ciSup' πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
ciSup_le'
isGLB_ciInf πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
IsGLB
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”isGLB_csInf
Set.range_nonempty
isGLB_ciInf_set πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set.Nonempty
IsGLB
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
β€”isLUB_ciSup_set
isLUB_ciSup πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
IsLUB
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”isLUB_csSup
Set.range_nonempty
isLUB_ciSup_set πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set.Nonempty
IsLUB
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
β€”sSup_image'
isLUB_csSup
Set.Nonempty.image
le_ciInf πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”ciSup_le
le_ciInf_iff πŸ“–mathematicalBddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”le_isGLB_iff
isGLB_ciInf
Set.forall_mem_range
le_ciInf_iff' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”le_ciInf_iff
OrderBot.bddBelow
le_ciInf_set_iff πŸ“–mathematicalSet.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
β€”le_isGLB_iff
isGLB_ciInf_set
Set.forall_mem_image
le_ciSup πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”le_csSup
Set.mem_range_self
le_ciSup_iff' πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”β€”
le_ciSup_of_le πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”le_trans
le_ciSup
le_ciSup_set πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.image
Set
Set.instMembership
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
β€”LE.le.trans_eq
le_csSup
Set.mem_image_of_mem
sSup_image'
lt_ciSup_iff πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set.range
Preorder.toLT
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”lt_csSup_iff
Set.range_nonempty
lt_ciSup_iff' πŸ“–mathematicalBddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Set.range
Preorder.toLT
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”Iff.not
ciSup_le_iff'

---

← Back to Index