Documentation Verification Report

Basic

📁 Source: Mathlib/Order/ConditionallyCompletePartialOrder/Basic.lean

Statistics

MetricCount
DefinitionsinstConditionallyCompletePartialOrder, instConditionallyCompletePartialOrderInfOfConditionallyCompletePartialOrderSup, instConditionallyCompletePartialOrderSupOfConditionallyCompletePartialOrderInf
3
TheoremscsInf_eq_of_forall_ge_of_forall_gt_exists_lt, csInf_le_csInf, csInf_le_csSup, csInf_le_iff, csInf_le_of_le, csInf_lt_of_lt, csSup_eq_of_forall_le_of_forall_lt_exists_gt, csSup_le_csSup, csSup_le_iff, le_csInf_iff, le_csSup_iff, le_csSup_of_le, lt_csSup_of_lt, notMem_of_csSup_lt, notMem_of_lt_csInf, subset_Icc_csInf_csSup, csSup_eq, csSup_mem, directedOn, csInf_eq, csInf_mem, directedOn, csInf_Icc, csInf_Ici, csInf_Ico, csInf_singleton, csSup_Icc, csSup_Iic, csSup_Ioc, csSup_singleton, inf_eq_bot_of_bot_mem, sup_eq_top_of_top_mem
32
Total35

DirectedOn

Theorems

NameKindAssumesProvesValidatesDepends On
csInf_eq_of_forall_ge_of_forall_gt_exists_lt 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Set.Nonempty
Set
Set.instMembership
Preorder.toLT
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
eq_of_le_of_not_lt'
le_csInf
lt_irrefl
LT.lt.trans_le'
csInf_le
csInf_le_csInf 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set.Nonempty
Set
Set.instHasSubset
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
le_csInf
csInf_le
csInf_le_csSup 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
BddBelow
BddAbove
Set.Nonempty
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
isGLB_le_isLUB
isGLB_csInf
isLUB_csSup
csInf_le_iff 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set.Nonempty
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ge_trans
le_csInf
csInf_le
csInf_le_of_le 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ge_trans
csInf_le
csInf_lt_of_lt 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set
Set.instMembership
Preorder.toLT
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
lt_of_lt_of_le'
csInf_le
csSup_eq_of_forall_le_of_forall_lt_exists_gt 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Set.Nonempty
Set
Set.instMembership
Preorder.toLT
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
eq_of_le_of_not_lt
csSup_le
lt_irrefl
LT.lt.trans_le
le_csSup
csSup_le_csSup 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set.Nonempty
Set
Set.instHasSubset
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
csSup_le
le_csSup
csSup_le_iff 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set.Nonempty
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
isLUB_le_iff
isLUB_csSup
le_csInf_iff 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
BddBelow
Set.Nonempty
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
le_isGLB_iff
isGLB_csInf
le_csSup_iff 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set.Nonempty
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
le_trans
csSup_le
le_csSup
le_csSup_of_le 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
le_trans
le_csSup
lt_csSup_of_lt 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
BddAbove
Set
Set.instMembership
Preorder.toLT
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
lt_of_lt_of_le
le_csSup
notMem_of_csSup_lt 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Preorder.toLT
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
BddAbove
Set
Set.instMembership
lt_irrefl
LE.le.trans_lt
le_csSup
notMem_of_lt_csInf 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Preorder.toLT
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
BddBelow
Set
Set.instMembership
lt_irrefl
LE.le.trans_lt'
csInf_le
subset_Icc_csInf_csSup 📖mathematicalDirectedOn
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
BddBelow
BddAbove
Set
Set.instHasSubset
Set.Icc
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
csInf_le
le_csSup

IsGreatest

Theorems

NameKindAssumesProvesValidatesDepends On
csSup_eq 📖mathematicalIsGreatest
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
IsLUB.unique
DirectedOn.isLUB_csSup
directedOn
nonempty
isLUB
csSup_mem 📖mathematicalIsGreatest
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
csSup_eq
directedOn 📖mathematicalIsGreatest
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
DirectedOn

IsLeast

Theorems

NameKindAssumesProvesValidatesDepends On
csInf_eq 📖mathematicalIsLeast
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
IsGLB.unique
DirectedOn.isGLB_csInf
directedOn
nonempty
isGLB
csInf_mem 📖mathematicalIsLeast
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
Set
Set.instMembership
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
csInf_eq
directedOn 📖mathematicalIsLeast
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
DirectedOn

OrderDual

Definitions

NameCategoryTheorems
instConditionallyCompletePartialOrder 📖CompOp
instConditionallyCompletePartialOrderInfOfConditionallyCompletePartialOrderSup 📖CompOp
instConditionallyCompletePartialOrderSupOfConditionallyCompletePartialOrderInf 📖CompOp

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
csInf_Icc 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
Set.Icc
IsLeast.csInf_eq
isLeast_Icc
csInf_Ici 📖mathematicalInfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
Set.Ici
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
IsLeast.csInf_eq
isLeast_Ici
csInf_Ico 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
Set.Ico
IsLeast.csInf_eq
isLeast_Ico
csInf_singleton 📖mathematicalInfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
Set
Set.instSingletonSet
IsLeast.csInf_eq
isLeast_singleton
csSup_Icc 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.Icc
IsGreatest.csSup_eq
isGreatest_Icc
csSup_Iic 📖mathematicalSupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
IsGreatest.csSup_eq
isGreatest_Iic
csSup_Ioc 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set.Ioc
IsGreatest.csSup_eq
isGreatest_Ioc
csSup_singleton 📖mathematicalSupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instSingletonSet
IsGreatest.csSup_eq
isGreatest_singleton
inf_eq_bot_of_bot_mem 📖mathematicalSet
Set.instMembership
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderInf.toPartialOrder
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
IsLeast.csInf_eq
bot_le
sup_eq_top_of_top_mem 📖mathematicalSet
Set.instMembership
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
IsGreatest.csSup_eq
le_top

---

← Back to Index