Documentation Verification Report

CountableDenseLinearOrder

📁 Source: Mathlib/Order/CountableDenseLinearOrder.lean

Statistics

MetricCount
DefinitionsPartialIso, comm, definedAtLeft, definedAtRight, funOfIdeal, instInhabited, instPreorder, invOfIdeal
8
Theoremsexists_across, embedding_from_countable_to_dense, exists_between_finsets, exists_orderEmbedding_insert, iso_of_countable_dense
5
Total13

Order

Definitions

NameCategoryTheorems
PartialIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
embedding_from_countable_to_dense 📖mathematicalOrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nonempty_encodable
exists_pair_lt
exists_between
Set.instDenselyOrdered
Set.ordConnected_Ioo
instNoMinOrderElemIoo
instNoMaxOrderElemIoo
cofinal_meets_idealOfCofinals
Subtype.prop
Ideal.directed
lt_iff_lt_of_cmp_eq_cmp
exists_between_finsets 📖Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
exists_between
Finset.max'_mem
Finset.min'_mem
lt_of_le_of_lt
Finset.le_max'
lt_of_lt_of_le
Finset.min'_le
NoMaxOrder.exists_gt
NoMinOrder.exists_lt
exists_orderEmbedding_insert 📖mathematicalSet.Elem
SetLike.coe
Finset
Finset.instSetLike
SetLike.instMembership
Finset.instInsert
LinearOrder.toDecidableEq
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instFunLikeOrderEmbedding
Set.inclusion
Finset.subset_insert
Finset.subset_insert
exists_between_finsets
OrderEmbedding.strictMono
LT.lt.trans
Finset.mem_image_of_mem
Finset.mem_filter
Finset.mem_attach
Finset.eq_of_mem_insert_of_notMem
Subtype.coe_eta
iso_of_countable_dense 📖mathematicalOrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nonempty_encodable
cofinal_meets_idealOfCofinals
Subtype.prop
Ideal.directed

Order.PartialIso

Definitions

NameCategoryTheorems
comm 📖CompOp
definedAtLeft 📖CompOp
definedAtRight 📖CompOp
funOfIdeal 📖CompOp
instInhabited 📖CompOp
instPreorder 📖CompOp
invOfIdeal 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_across 📖mathematicalcmp
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrder.toDecidableLT
Subtype.prop
Finset.mem_image
lt_iff_lt_of_cmp_eq_cmp
Finset.mem_filter
lt_trans
Order.exists_between_finsets
lt_or_gt_of_ne
cmp_eq_lt_iff
cmp_eq_gt_iff

---

← Back to Index