| Metric | Count |
DefinitionsAntiSymmetric, EmptyRelation, Irreflexive, IsAntisymm, IsAsymm, IsEquiv, IsIrrefl, IsLinearOrder, IsLowerSet, IsPartialOrder, IsPreorder, IsRefl, IsRelLowerSet, IsRelUpperSet, IsStrictOrder, IsStrictTotalOrder, IsStrictWeakOrder, IsSymm, IsTotal, IsTrans, IsTrichotomous, IsUpperSet, LowerSet, carrier, MaximalFor, MinimalFor, RelLowerSet, carrier, RelUpperSet, carrier, Total, UpperSet, carrier, instTransOfIsTrans | 34 |
Theoremsreflexive, symmetric, transitive, irrefl, irreflexive, trans, isAntisymm, isIrrefl, toIsPreorder, toSymm, toIsPartialOrder, toTotal, toAntisymm, toIsPreorder, toIsTrans, toRefl, toIrrefl, toIsTrans, toIsStrictOrder, toTrichotomous, incomp_trans, toIsStrictOrder, decide, trans, lower', le_of_ge, prop, le_of_le, prop, le_of_le, prop, le_of_le, prop, isRelLowerSet', isRelUpperSet', decide, antisymm, decide, irrefl, isAntisymm, isIrrefl, decide, decide, decide, decide, isTrichotomous, to_refl, trichotomous, decide, upper', antisymm, antisymm', antisymm_iff, antisymm_of, antisymm_of', asymm, asymm_of, asymm_of_isTrans_of_irrefl, comm, comm_of, empty_relation_apply, eq_isEquiv, extensional_of_trichotomous_of_irrefl, iff_isEquiv, instIrreflEmptyRelation_mathlib, instIsTransOfTrans, irrefl, irrefl_of, ne_of_irrefl, ne_of_irrefl', not_rel_of_subsingleton, of_eq, refl, refl_of, rel_congr, rel_congr_left, rel_congr_right, rel_of_subsingleton, symm_of, total_of, trans, trans_of, trans_trichotomous_left, trans_trichotomous_right, transitive_of_trans, trichotomous, trichotomous_of | 87 |
| Total | 121 |
| Name | Category | Theorems |
AntiSymmetric π | MathDef | β |
EmptyRelation π | MathDef | β |
Irreflexive π | MathDef | β |
IsAntisymm π | MathDef | β |
IsAsymm π | MathDef | β |
IsEquiv π | CompData | 10 mathmath: IsConjRoot.instIsEquiv, LocalizedModule.r.isEquiv, SetTheory.PGame.instIsEquivEquiv, eq_isEquiv, Order.Preimage.instIsEquiv, Quotient.instIsEquivEquiv, SetTheory.PGame.instIsEquivIdentical, Ne.instIsEquiv_compl, iff_isEquiv, Path.Homotopic.instIsEquiv
|
IsIrrefl π | MathDef | β |
IsLinearOrder π | CompData | 4 mathmath: extend_partialOrder, RelEmbedding.isLinearOrder, instIsLinearOrderGe, instIsLinearOrderLe
|
IsLowerSet π | MathDef | 47 mathmath: Order.IsIdeal.IsLowerSet, IsUpperSet.ofDual, PrincipalSeg.isLowerSet_range, Topology.IsLowerSet.isOpen_iff_isLowerSet, IsUpperSet.compl, Order.Ideal.lower, isUpperSet_preimage_toDual_iff, isLowerSet_iff_Iic_subset, Topology.IsScott.isClosed_iff_isLowerSet_and_dirSupClosed, isLowerSet_univ, Relation.fibration_iff_isLowerSet_image, isLowerSet_preimage_toDual_iff, Topology.IsUpper.isLowerSet_of_isClosed, isLowerSet_Iio, Topology.WithLowerSet.isLowerSet_toLowerSet_preimage, IsUpperSet.neg, YoungDiagram.isLowerSet, isLowerSet_preimage_ofDual_iff, IsUpperSet.sub_left, Topology.IsUpperSet.isClosed_iff_isLower, isLowerSet_setOf, IsUpperSet.inv, isLowerSet_subtype_iff_isRelLowerSet, isLowerSet_compl, isUpperSet_preimage_ofDual_iff, Set.antitone_mem, IsUpperSet.div_left, isUpperSet_compl, Finset.isLowerSet_shatterer, Order.isIdeal_iff, Topology.WithLowerSet.isOpen_ofLowerSet_preimage, Finset.shatterer_eq, Topology.IsScott.isLowerSet_of_isClosed, isLowerSet_iff_forall_lt, Topology.IsLower.isLowerSet_of_isOpen, isLowerSet_iff_Iio_subset, isLowerSet_empty, IsUpperSet.toDual, exists_isClopen_upper_or_lower_of_ne, Relation.fibration_iff_isLowerSet_image_Iic, IsUpperSet.isLowerSet_preimage_coe, LowerSet.lower', exists_isClopen_lower_of_not_le, LowerSet.lower, lowerClosure_eq, InitialSeg.isLowerSet_range, isLowerSet_Iic
|
IsPartialOrder π | CompData | 9 mathmath: IsLinearOrder.toIsPartialOrder, List.instIsPartialOrderIsPrefix, RelEmbedding.isPartialOrder, List.instIsPartialOrderIsInfix, instIsPartialOrderSetIsExtreme, List.instIsPartialOrderIsSuffix, IsPartialOrder.swap, instIsPartialOrderLe, instIsPartialOrderGe
|
IsPreorder π | CompData | 9 mathmath: IsPreorder.swap, instIsPreorderPFunNatTuringReducible, instIsPreorderLe, IsEquiv.toIsPreorder, Order.Preimage.instIsPreorder, IsPartialOrder.toIsPreorder, Subrel.instIsPreorderSubtype, instIsPreorderGe, RelEmbedding.isPreorder
|
IsRefl π | MathDef | β |
IsRelLowerSet π | MathDef | 8 mathmath: isRelLowerSet_Icc_ge, Geometry.SimplicialComplex.isRelLowerSet_faces, IsLowerSet.isRelLowerSet_sep, isRelLowerSet_empty, RelLowerSet.isRelLowerSet, isLowerSet_subtype_iff_isRelLowerSet, isRelLowerSet_self, RelLowerSet.isRelLowerSet'
|
IsRelUpperSet π | MathDef | 7 mathmath: isRelUpperSet_empty, IsUpperSet.isRelUpperSet_sep, RelUpperSet.isRelUpperSet', isRelUpperSet_Icc_le, isUpperSet_subtype_iff_isRelUpperSet, RelUpperSet.isRelUpperSet, isRelUpperSet_self
|
IsStrictOrder π | CompData | 16 mathmath: Finsupp.Colex.isStrictOrder, RelEmbedding.isStrictOrder, Finsupp.Lex.isStrictOrder, Set.IsStrictOrder.subset, instIsStrictOrderGt, Order.Preimage.instIsStrictOrder, Pi.Colex.isStrictOrder, Subrel.instIsStrictOrderSubtype, DFinsupp.Lex.isStrictOrder, Finsupp.DegLex.isStrictOrder, IsStrictTotalOrder.toIsStrictOrder, IsStrictWeakOrder.toIsStrictOrder, IsStrictOrder.swap, Pi.Lex.isStrictOrder, DFinsupp.Colex.isStrictOrder, instIsStrictOrderLt
|
IsStrictTotalOrder π | CompData | 6 mathmath: instIsStrictTotalOrderLt, IsStrictTotalOrder.swap, instIsStrictTotalOrderMonovaryOrder, instIsStrictTotalOrderOfIsWellOrder, instIsStrictTotalOrderGt, RelEmbedding.isStrictTotalOrder
|
IsStrictWeakOrder π | CompData | 2 mathmath: Order.Preimage.instIsStrictWeakOrder, isStrictWeakOrder_of_isOrderConnected
|
IsSymm π | MathDef | β |
IsTotal π | MathDef | 1 mathmath: PartENat.isTotal
|
IsTrans π | CompData | 40 mathmath: instIsTransAntisymmRel, Associated.instIsTrans, instIsTransDvd, instIsTransOfTrans, Finset.instIsTransSubset, Quotient.instIsTransLe, List.SublistForallβ.is_trans, OrderDual.instIsTransLE, SetTheory.PGame.instIsTransIdentical, FirstOrder.Language.Theory.Iff.instIsTransBoundedFormula, IsStrictOrder.toIsTrans, Finset.instIsTransSSubset, Set.instIsTransSubset, IsPreorder.toIsTrans, PSet.instIsTransSubset, IsTrans.decide, RelEmbedding.isTrans, ZFSet.IsOrdinal.isTrans, instIsTransGt, instIsTransLe, FirstOrder.Language.Theory.Imp.instIsTransBoundedFormula, ZFSet.isOrdinal_iff_isTrans, instIsTransLt, Sum.instIsTransLiftRel, IsTrans.swap, Subrel.instIsTransSubtype, Prod.instIsTransLex, instIsTransGe, AddCommGroup.instIsTransModEq, SetTheory.PGame.instIsTransSubsequent, ZFSet.instIsTransSubset, IsWellOrder.toIsTrans, instIsTransNatLeHAddOfNat, Set.instIsTransSSubset, Sum.instIsTransLex, Relation.instIsTransTransGen, OrderDual.instIsTransLT, Int.ModEq.instIsTrans, Relation.instIsTransReflTransGen, Order.Preimage.instIsTrans
|
IsTrichotomous π | MathDef | β |
IsUpperSet π | MathDef | 49 mathmath: UpperSet.upper', Topology.IsScott.isUpperSet_of_isOpen, IsLowerSet.div_left, isUpperSet_iff_forall_lt, upperClosure_eq, IsLowerSet.ofDual, Set.Intersecting.isUpperSet, Set.Intersecting.isUpperSet', isUpperSet_preimage_toDual_iff, Specialization.isOpen_toEquiv_preimage, IsLowerSet.sub_left, isLowerSet_preimage_toDual_iff, Topology.IsUpperSet.isOpen_iff_isUpperSet, exists_isClopen_upper_of_not_le, isUpperSet_Ioi, Topology.IsLowerSet.isClosed_iff_isUpper, Relation.fibration_iff_isUpperSet_image, IsLowerSet.compl, Topology.WithUpperSet.isUpperSet_toUpperSet_preimage, Topology.WithScott.isOpen_iff_isUpperSet_and_scottHausdorff_open', isUpperSet_Ici, isLowerSet_preimage_ofDual_iff, ClopenUpperSet.upper, Set.monotone_mem, isLowerSet_compl, isUpperSet_preimage_ofDual_iff, Topology.IsUpper.isUpperSet_of_isOpen, isUpperSet_compl, IsLowerSet.isUpperSet_preimage_coe, isUpperSet_setOf, Specialization.isUpperSet_ofEquiv_preimage, isUpperSet_empty, ClopenUpperSet.upper', UpperSet.upper, IsLowerSet.toDual, Topology.IsScott.isOpen_iff_isUpperSet_and_dirSupInaccOn, isUpperSet_subtype_iff_isRelUpperSet, IsLowerSet.inv, isUpperSet_univ, exists_isClopen_upper_or_lower_of_ne, Topology.IsLower.isUpperSet_of_isClosed, isUpperSet_iff_Ici_subset, Topology.IsScott.isOpen_iff_isUpperSet_and_scottHausdorff_open, Relation.fibration_iff_isUpperSet_image_Ici, PriestleySpace.priestley, isUpperSet_iff_Ioi_subset, Scott.IsOpen.isUpperSet, Topology.WithUpperSet.isOpen_ofUpperSet_preimage, IsLowerSet.neg
|
LowerSet π | CompData | 189 mathmath: LowerSet.iSup_Iic, LowerSet.mem_compl_iff, OrderEmbedding.supIrredLowerSet_apply, LowerSet.coe_eq_univ, LowerSet.map_Iio, LowerSet.inf_prod, lowerClosure_union, LowerSet.sup_prod, LowerSet.compl_map, LowerSet.erase_le, LowerSet.mem_iSup_iff, IsOpen.lowerClosure, LowerSet.compl_iInf, LowerSet.mem_inf_iff, LowerSet.coe_mk, UpperSet.compl_sup, lowerClosure_infs, LowerSet.coe_subset_coe, upperSetIsoLowerSet_apply, lowerClosure_eq_top_iff, LowerSet.prod_self_lt_prod_self, LowerSet.compl_iInfβ, subset_lowerClosure, LowerSet.sdiff_le_left, LowerSet.disjoint_coe, Topology.IsLowerSet.nhdsKer_eq_lowerClosure, lowerClosure_image, LowerSet.coe_sdiff, LowerSet.Iic_top, LowerSet.bot_prod, lowerClosure_one, LowerSet.Iio_strictMono, UpperSet.compl_sSup, LowerSet.bot_lt_Iic, LowerSet.Iio_bot, IsClosed.lowerClosure_pi, IsClopen.lowerClosure_pi, LowerSet.coe_eq_empty, LowerSet.Iic_iInf, lowerClosure_eq_bot_iff, LowerSet.coe_map, Order.Ideal.toLowerSet_injective, LowerSet.compl_iSupβ, Topology.IsScott.lowerClosure_subset_closure, lowerClosure_univ, lowerClosure_interior_subset', LowerSet.sdiff_eq_left, LowerSet.Iic_one, LowerSet.coe_Iio, Topology.IsUpper.isClosed_lowerClosure, LowerSet.total_le, OrderIso.supIrredLowerSet_symm_apply, lowerClosure_prod, LowerSet.coe_sSup, LowerSet.compl_inf, UpperSet.compl_iSupβ, LowerSet.Iic_injective, lowerClosure_empty, LowerSet.coe_iicsInfHom, LowerSet.coe_iSup, upperSetIsoLowerSet_symm_apply, LowerSet.sdiff_lt_left, LowerSet.symm_map, mem_lowerClosure, LowerSet.coe_ssubset_coe, LowerSet.coe_sub, LowerSet.supIrred_iff_of_finite, LowerSet.mem_top, LowerSet.coe_sup, LowerSet.mem_iInfβ_iff, LowerSet.iicsInfHom_apply, LowerSet.coe_top, lowerClosure_eq_Iic_csSup, lowerClosure_interior_subset, LowerSet.Iio_eq_bot, LowerSet.coe_sInf, LowerSet.Iic_strictMono, UpperSet.coe_compl, UpperSet.compl_iSup, LowerSet.disjoint_prod, Topology.IsUpperSet.closure_eq_lowerClosure, OrderIso.supIrredLowerSet_apply, LowerSet.coe_erase, UpperSet.compl_top, LowerSet.top_prod_top, lowerClosure_zero, LowerSet.compl_top, LowerSet.Iic_iInfβ, LowerSet.coe_inf, Order.Ideal.top_toLowerSet, LowerSet.coe_prod, LowerSet.Iic_le, LowerSet.coe_Iic, LowerSet.coe_iInfβ, LowerSet.coe_iInf, lowerClosure_add, LowerSet.iicInfHom_apply, OrderEmbedding.supIrredLowerSet_surjective, coe_lowerClosure, LowerSet.mem_iSupβ_iff, LowerSet.mem_map, lowerClosure_sUnion, IsAntichain.maximal_mem_lowerClosure_iff_mem, LowerSet.compl_le_compl, LowerSet.mem_Iio_iff, Matroid.setOf_indep_eq, IsLowerSet.lowerClosure, LowerSet.erase_lt, add_lowerClosure, LowerSet.compl_iSup, ordConnected_iff_upperClosure_inter_lowerClosure, upperBounds_lowerClosure, LowerSet.mem_Iic_iff, LowerSet.Iic_sInf, lowerClosure_iUnion, lowerClosure_le, lowerClosure_vadd, LowerSet.mem_sInf_iff, LowerSet.prod_self_le_prod_self, LowerSet.ext_iff, BddAbove.lowerClosure, LowerSet.prod_eq_bot, LowerSet.notMem_bot, LowerSet.prod_sup, LowerSet.prod_le_prod_iff, Set.OrdConnected.upperClosure_inter_lowerClosure, LowerSet.coe_compl, LowerSet.compl_sSup, IsUpperSet.disjoint_lowerClosure_left, LowerSet.prod_bot, LowerSet.map_refl, Set.Finite.lowerClosure, LowerSet.coe_add, LowerSet.coe_div, UpperSet.compl_map, UpperSet.compl_inf, OrderEmbedding.birkhoffSet_apply, LowerSet.prod_inf_prod, LowerSet.compl_sInf, LowerSet.coe_iicInfHom, lowerClosure_min, UpperSet.compl_iInf, LowerSet.Iic_prod, UpperSet.compl_bot, LowerSet.instIsConcreteLE, UpperSet.mem_compl_iff, LowerSet.map_Iic, lowerClosure_mul, LowerSet.coe_iSupβ, Finset.Colex.le_iff_sdiff_subset_lowerClosure, lowerClosure_smul, LowerSet.coe_nonempty, LowerSet.mem_mk, HasUpperLowerClosure.isOpen_lowerClosure, LowerSet.compl_bot, LowerSet.prod_inf, lowerClosure_eq_top, lowerClosure_mul_distrib, UpperSet.compl_iInfβ, mul_lowerClosure, Topology.IsLowerSet.nhdsSet_eq_principal_lowerClosure, UpperSet.coe_sdiff, UpperSet.compl_sInf, lowerClosure_add_distrib, LowerSet.lower, LowerSet.mem_prod, gc_lowerClosure_coe, LowerSet.Iic_inf, LowerSet.lowerClosure, IsUpperSet.disjoint_lowerClosure_right, LowerSet.supIrred_Iic, Order.Ideal.coe_toLowerSet, LowerSet.carrier_eq_coe, lowerClosure_eq, LowerSet.Iic_zero, closure_lowerClosure_comm_pi, LowerSet.coe_bot, LowerSet.map_map, lowerClosure_mono, LowerSet.mem_sSup_iff, LowerSet.coe_mul, UpperSet.coe_erase, LowerSet.mem_iInf_iff, LowerSet.erase_eq, LowerSet.compl_sup, bddAbove_lowerClosure, LowerSet.Ici_prod_Ici, LowerSet.mem_sup_iff, UpperSet.compl_le_compl
|
MaximalFor π | MathDef | 12 mathmath: Set.Finite.exists_maximalFor, maximalFor_eq_iff, IntermediateField.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, MinimalFor.maximalFor_of_strictAntiOn_comp, WeierstrassCurve.IsMinimal.val_Ξ_maximal, WeierstrassCurve.isMinimal_iff, exists_maximalFor_of_wellFoundedGT, Set.Finite.exists_maximalFor', maximalFor_iff_forall_gt, Finset.exists_maximalFor, IntermediateField.FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, maximalFor_id
|
MinimalFor π | MathDef | 11 mathmath: MaximalFor.minimalFor_of_strictAntiOn_comp, exists_minimalFor_of_wellFoundedLT, Finset.exists_minimalFor, Function.isMinimalFor_argminOn, Function.isMinimalFor_argmin, Set.Finite.exists_minimalFor', Set.Finite.exists_minimalFor, Set.IsPWO.exists_minimalFor, minimalFor_id, minimalFor_eq_iff, minimalFor_iff_forall_lt
|
RelLowerSet π | CompData | 1 mathmath: RelLowerSet.isRelLowerSet
|
RelUpperSet π | CompData | 1 mathmath: RelUpperSet.isRelUpperSet
|
Total π | MathDef | β |
UpperSet π | CompData | 207 mathmath: UpperSet.mem_Ioi_iff, UpperSet.coe_Ici, UpperSet.erase_eq, upperClosure_zero, LowerSet.mem_compl_iff, upperClosure_one, UpperSet.Ici_injective, UpperSet.coe_one, ClopenUpperSet.coe_toUpperSet, LowerSet.compl_map, upperClosure_eq, UpperSet.mem_inf_iff, LowerSet.compl_iInf, UpperSet.Ici_zero, BddBelow.upperClosure, FiniteArchimedeanClass.mem_addSubgroup_iff, UpperSet.compl_sup, MulArchimedeanClass.subgroup_strictAntiOn, UpperSet.mem_sInf_iff, bddBelow_upperClosure, ArchimedeanClass.addSubgroup_antitone, Topology.IsUpperSet.nhdsKer_eq_upperClosure, upperClosure_image, upperSetIsoLowerSet_apply, OrderEmbedding.infIrredUpperSet_surjective, UpperSet.sdiff_eq_left, LowerSet.compl_iInfβ, UpperSet.coe_add, IsClosed.upperClosure, UpperSet.carrier_eq_coe, IsUpperSet.upperClosure, LowerSet.coe_sdiff, UpperSet.Ici_lt_top, UpperSet.mem_iSup_iff, IsClopen.upperClosure_pi, UpperSet.mem_map, UpperSet.map_map, UpperSet.compl_sSup, upperClosure_sups, Topology.IsLowerSet.closure_eq_upperClosure, UpperSet.coe_inf, subset_upperClosure, UpperSet.coe_ssubset_coe, add_upperClosure, UpperSet.ext_iff, UpperSet.coe_eq_empty, upperClosure_interior_subset', OrderIso.infIrredUpperSet_symm_apply, UpperSet.Ici_iSup, UpperSet.coe_div, MulArchimedeanClass.mem_subgroup_iff, MulArchimedeanClass.subsemigroup_strictAnti, LowerSet.compl_iSupβ, UpperSet.Ioi_top, UpperSet.codisjoint_coe, upperClosure_interior_subset, UpperSet.mem_sup_iff, UpperSet.prod_le_prod_iff, UpperSet.Ici_sup, UpperSet.notMem_top, UpperSet.coe_prod, LowerSet.compl_inf, UpperSet.compl_iSupβ, UpperSet.map_refl, UpperSet.prod_top, UpperSet.Ici_sSup, UpperSet.top_prod, Topology.IsLower.isClosed_upperClosure, upperSetIsoLowerSet_symm_apply, UpperSet.mem_Ici_iff, UpperSet.coe_mk, UpperSet.symm_map, OrderEmbedding.infIrredUpperSet_apply, PrimitiveSpectrum.hull_finsetInf, upperClosure_mul, UpperSet.Ici_prod_Ici, closure_upperClosure_comm_pi, UpperSet.coe_iciSupHom, UpperSet.infIrred_Ici, lowerBounds_upperClosure, UpperSet.Ioi_eq_top, UpperSet.coe_iInfβ, UpperSet.mem_sSup_iff, UpperSet.coe_eq_univ, UpperSet.coe_compl, UpperSet.sup_prod, UpperSet.compl_iSup, UpperSet.le_Ici, FiniteArchimedeanClass.subsemigroup_eq_addSubgroup, upperClosure_min, LowerSet.coe_erase, upperClosure_eq_top_iff, ArchimedeanClass.mem_addSubgroup_iff, UpperSet.compl_top, UpperSet.mem_iInf_iff, ArchimedeanClass.addSubgroup_eq_bot, UpperSet.map_Ici, UpperSet.coe_mul, IsAntichain.minimal_mem_upperClosure_iff_mem, LowerSet.compl_top, UpperSet.coe_icisSupHom, UpperSet.lt_sdiff_left, UpperSet.upperClosure, UpperSet.Ici_one, IsOpen.upperClosure, LowerSet.compl_le_compl, UpperSet.coe_zero, Topology.IsUpperSet.nhdsSet_eq_principal_upperClosure, PrimitiveSpectrum.preimage_upperClosure_compl_finset, ArchimedeanClass.subsemigroup_strictAnti, upperClosure_empty, gc_upperClosure_coe, UpperSet.coe_top, UpperSet.icisSupHom_apply, upperClosure_prod, UpperSet.prod_inf, UpperSet.coe_iSup, UpperSet.mem_iSupβ_iff, LowerSet.compl_iSup, FiniteMulArchimedeanClass.mem_subgroup_iff, UpperSet.iciSupHom_apply, ordConnected_iff_upperClosure_inter_lowerClosure, OrderIso.infIrredUpperSet_apply, UpperSet.prod_self_le_prod_self, upperClosure_univ, UpperSet.mem_mk, upperClosure_eq_bot_iff, UpperSet.le_erase, UpperSet.coe_iInf, UpperSet.prod_self_lt_prod_self, IsLowerSet.disjoint_upperClosure_left, UpperSet.coe_sub, upperClosure_add_distrib, IsLowerSet.disjoint_upperClosure_right, HasUpperLowerClosure.isOpen_upperClosure, UpperSet.coe_iSupβ, upperClosure_sUnion, UpperSet.coe_nonempty, UpperSet.map_Ioi, UpperSet.mem_prod, coe_upperClosure, UpperSet.coe_sup, FiniteArchimedeanClass.addSubgroup_strictAnti, upperClosure_add, Set.OrdConnected.upperClosure_inter_lowerClosure, LowerSet.coe_compl, LowerSet.compl_sSup, UpperSet.Ioi_strictMono, upperClosure_vadd, FiniteMulArchimedeanClass.subgroup_eq_bot, le_upperClosure, UpperSet.upper, UpperSet.infIrred_iff_of_finite, MulArchimedeanClass.subgroup_antitone, UpperSet.compl_map, UpperSet.compl_inf, LowerSet.compl_sInf, ArchimedeanClass.addSubgroup_strictAntiOn, FiniteArchimedeanClass.submodule_strictAnti, UpperSet.compl_iInf, UpperSet.coe_map, UpperSet.coe_Ioi, UpperSet.compl_bot, FiniteMulArchimedeanClass.subsemigroup_eq_subgroup, UpperSet.mem_compl_iff, UpperSet.bot_prod_bot, upperClosure_mul_distrib, UpperSet.coe_sInf, UpperSet.Ici_le_Ioi, LowerSet.compl_bot, upperClosure_iUnion, UpperSet.prod_sup_prod, UpperSet.le_sdiff_left, UpperSet.Ici_bot, mul_upperClosure, UpperSet.compl_iInfβ, UpperSet.coe_sSup, UpperSet.coe_sdiff, Set.Finite.upperClosure, UpperSet.codisjoint_prod, UpperSet.compl_sInf, UpperSet.coe_subset_coe, FiniteMulArchimedeanClass.subgroup_strictAnti, IsClosed.upperClosure_pi, UpperSet.inf_prod, MulArchimedeanClass.subgroup_eq_bot, upperClosure_union, UpperSet.lt_erase, UpperSet.total_le, UpperSet.mem_iInfβ_iff, FiniteArchimedeanClass.addSubgroup_eq_bot, UpperSet.coe_bot, UpperSet.prod_eq_top, upperClosure_smul, UpperSet.coe_erase, UpperSet.Ici_prod, UpperSet.mem_bot, mem_upperClosure, upperClosure_eq_Ici_csInf, upperClosure_eq_bot, LowerSet.compl_sup, UpperSet.iInf_Ici, UpperSet.prod_sup, upperClosure_anti, UpperSet.compl_le_compl, UpperSet.Ici_iSupβ, UpperSet.Ici_strictMono
|
instTransOfIsTrans π | CompOp | β |