Documentation Verification Report

Unbundled

πŸ“ Source: Mathlib/Order/Defs/Unbundled.lean

Statistics

MetricCount
DefinitionsAntiSymmetric, EmptyRelation, Irreflexive, IsAntisymm, IsAsymm, IsEquiv, IsIrrefl, IsLinearOrder, IsLowerSet, IsPartialOrder, IsPreorder, IsRefl, IsRelLowerSet, IsRelUpperSet, IsStrictOrder, IsStrictTotalOrder, IsStrictWeakOrder, IsSymm, IsTotal, IsTrans, IsTrichotomous, IsUpperSet, LowerSet, carrier, MaximalFor, MinimalFor, RelLowerSet, carrier, RelUpperSet, carrier, Total, UpperSet, carrier, instTransOfIsTrans
34
Theoremsreflexive, symmetric, transitive, irrefl, irreflexive, trans, isAntisymm, isIrrefl, toIsPreorder, toSymm, toIsPartialOrder, toTotal, toAntisymm, toIsPreorder, toIsTrans, toRefl, toIrrefl, toIsTrans, toIsStrictOrder, toTrichotomous, incomp_trans, toIsStrictOrder, decide, trans, lower', le_of_ge, prop, le_of_le, prop, le_of_le, prop, le_of_le, prop, isRelLowerSet', isRelUpperSet', decide, antisymm, decide, irrefl, isAntisymm, isIrrefl, decide, decide, decide, decide, isTrichotomous, to_refl, trichotomous, decide, upper', antisymm, antisymm', antisymm_iff, antisymm_of, antisymm_of', asymm, asymm_of, asymm_of_isTrans_of_irrefl, comm, comm_of, empty_relation_apply, eq_isEquiv, extensional_of_trichotomous_of_irrefl, iff_isEquiv, instIrreflEmptyRelation_mathlib, instIsTransOfTrans, irrefl, irrefl_of, ne_of_irrefl, ne_of_irrefl', not_rel_of_subsingleton, of_eq, refl, refl_of, rel_congr, rel_congr_left, rel_congr_right, rel_of_subsingleton, symm_of, total_of, trans, trans_of, trans_trichotomous_left, trans_trichotomous_right, transitive_of_trans, trichotomous, trichotomous_of
87
Total121

Equivalence

Theorems

NameKindAssumesProvesValidatesDepends On
reflexive πŸ“–mathematicalβ€”Reflexiveβ€”β€”
symmetric πŸ“–mathematicalβ€”Symmetricβ€”β€”
transitive πŸ“–mathematicalβ€”Transitiveβ€”β€”

InvImage

Theorems

NameKindAssumesProvesValidatesDepends On
irrefl πŸ“–β€”β€”β€”β€”β€”
irreflexive πŸ“–β€”β€”β€”β€”irrefl
trans πŸ“–β€”Transitiveβ€”β€”β€”

IsAsymm

Theorems

NameKindAssumesProvesValidatesDepends On
isAntisymm πŸ“–β€”β€”β€”β€”Std.Asymm.antisymm
isIrrefl πŸ“–β€”β€”β€”β€”Std.Asymm.irrefl

IsEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
toIsPreorder πŸ“–mathematicalβ€”IsPreorderβ€”β€”
toSymm πŸ“–β€”β€”β€”β€”β€”

IsLinearOrder

Theorems

NameKindAssumesProvesValidatesDepends On
toIsPartialOrder πŸ“–mathematicalβ€”IsPartialOrderβ€”β€”
toTotal πŸ“–β€”β€”β€”β€”β€”

IsPartialOrder

Theorems

NameKindAssumesProvesValidatesDepends On
toAntisymm πŸ“–β€”β€”β€”β€”β€”
toIsPreorder πŸ“–mathematicalβ€”IsPreorderβ€”β€”

IsPreorder

Theorems

NameKindAssumesProvesValidatesDepends On
toIsTrans πŸ“–mathematicalβ€”IsTransβ€”β€”
toRefl πŸ“–β€”β€”β€”β€”β€”

IsStrictOrder

Theorems

NameKindAssumesProvesValidatesDepends On
toIrrefl πŸ“–β€”β€”β€”β€”β€”
toIsTrans πŸ“–mathematicalβ€”IsTransβ€”β€”

IsStrictTotalOrder

Theorems

NameKindAssumesProvesValidatesDepends On
toIsStrictOrder πŸ“–mathematicalβ€”IsStrictOrderβ€”β€”
toTrichotomous πŸ“–β€”β€”β€”β€”β€”

IsStrictWeakOrder

Theorems

NameKindAssumesProvesValidatesDepends On
incomp_trans πŸ“–β€”β€”β€”β€”β€”
toIsStrictOrder πŸ“–mathematicalβ€”IsStrictOrderβ€”β€”

IsTrans

Theorems

NameKindAssumesProvesValidatesDepends On
decide πŸ“–mathematicalβ€”IsTransβ€”trans
trans πŸ“–β€”β€”β€”β€”β€”

LowerSet

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
6 mathmath: Order.Ideal.directed', Order.Ideal.nonempty', Order.Ideal.carrier_eq_coe, IsClosed.lowerClosure, lower', carrier_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
lower' πŸ“–mathematicalβ€”IsLowerSet
carrier
β€”β€”

Maximal

Theorems

NameKindAssumesProvesValidatesDepends On
le_of_ge πŸ“–β€”Maximalβ€”β€”β€”
prop πŸ“–β€”Maximalβ€”β€”β€”

MaximalFor

Theorems

NameKindAssumesProvesValidatesDepends On
le_of_le πŸ“–β€”MaximalForβ€”β€”β€”
prop πŸ“–β€”MaximalForβ€”β€”β€”

Minimal

Theorems

NameKindAssumesProvesValidatesDepends On
le_of_le πŸ“–β€”Minimalβ€”β€”β€”
prop πŸ“–β€”Minimalβ€”β€”β€”

MinimalFor

Theorems

NameKindAssumesProvesValidatesDepends On
le_of_le πŸ“–β€”MinimalForβ€”β€”β€”
prop πŸ“–β€”MinimalForβ€”β€”β€”

RelLowerSet

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
1 mathmath: isRelLowerSet'

Theorems

NameKindAssumesProvesValidatesDepends On
isRelLowerSet' πŸ“–mathematicalβ€”IsRelLowerSet
carrier
β€”β€”

RelUpperSet

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
1 mathmath: isRelUpperSet'

Theorems

NameKindAssumesProvesValidatesDepends On
isRelUpperSet' πŸ“–mathematicalβ€”IsRelUpperSet
carrier
β€”β€”

Std.Antisymm

Theorems

NameKindAssumesProvesValidatesDepends On
decide πŸ“–β€”β€”β€”β€”β€”

Std.Asymm

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm πŸ“–β€”β€”β€”β€”β€”
decide πŸ“–β€”β€”β€”β€”β€”
irrefl πŸ“–β€”β€”β€”β€”β€”
isAntisymm πŸ“–β€”β€”β€”β€”antisymm
isIrrefl πŸ“–β€”β€”β€”β€”irrefl

Std.Irrefl

Theorems

NameKindAssumesProvesValidatesDepends On
decide πŸ“–β€”β€”β€”β€”β€”

Std.Refl

Theorems

NameKindAssumesProvesValidatesDepends On
decide πŸ“–β€”β€”β€”β€”β€”

Std.Symm

Theorems

NameKindAssumesProvesValidatesDepends On
decide πŸ“–β€”β€”β€”β€”β€”

Std.Total

Theorems

NameKindAssumesProvesValidatesDepends On
decide πŸ“–β€”β€”β€”β€”β€”
isTrichotomous πŸ“–β€”β€”β€”β€”trichotomous
to_refl πŸ“–β€”β€”β€”β€”β€”
trichotomous πŸ“–β€”β€”β€”β€”β€”

Std.Trichotomous

Theorems

NameKindAssumesProvesValidatesDepends On
decide πŸ“–β€”β€”β€”β€”β€”

UpperSet

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
2 mathmath: upper', carrier_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
upper' πŸ“–mathematicalβ€”IsUpperSet
carrier
β€”β€”

(root)

Definitions

NameCategoryTheorems
AntiSymmetric πŸ“–MathDefβ€”
EmptyRelation πŸ“–MathDefβ€”
Irreflexive πŸ“–MathDefβ€”
IsAntisymm πŸ“–MathDefβ€”
IsAsymm πŸ“–MathDefβ€”
IsEquiv πŸ“–CompData
10 mathmath: IsConjRoot.instIsEquiv, LocalizedModule.r.isEquiv, SetTheory.PGame.instIsEquivEquiv, eq_isEquiv, Order.Preimage.instIsEquiv, Quotient.instIsEquivEquiv, SetTheory.PGame.instIsEquivIdentical, Ne.instIsEquiv_compl, iff_isEquiv, Path.Homotopic.instIsEquiv
IsIrrefl πŸ“–MathDefβ€”
IsLinearOrder πŸ“–CompData
4 mathmath: extend_partialOrder, RelEmbedding.isLinearOrder, instIsLinearOrderGe, instIsLinearOrderLe
IsLowerSet πŸ“–MathDef
47 mathmath: Order.IsIdeal.IsLowerSet, IsUpperSet.ofDual, PrincipalSeg.isLowerSet_range, Topology.IsLowerSet.isOpen_iff_isLowerSet, IsUpperSet.compl, Order.Ideal.lower, isUpperSet_preimage_toDual_iff, isLowerSet_iff_Iic_subset, Topology.IsScott.isClosed_iff_isLowerSet_and_dirSupClosed, isLowerSet_univ, Relation.fibration_iff_isLowerSet_image, isLowerSet_preimage_toDual_iff, Topology.IsUpper.isLowerSet_of_isClosed, isLowerSet_Iio, Topology.WithLowerSet.isLowerSet_toLowerSet_preimage, IsUpperSet.neg, YoungDiagram.isLowerSet, isLowerSet_preimage_ofDual_iff, IsUpperSet.sub_left, Topology.IsUpperSet.isClosed_iff_isLower, isLowerSet_setOf, IsUpperSet.inv, isLowerSet_subtype_iff_isRelLowerSet, isLowerSet_compl, isUpperSet_preimage_ofDual_iff, Set.antitone_mem, IsUpperSet.div_left, isUpperSet_compl, Finset.isLowerSet_shatterer, Order.isIdeal_iff, Topology.WithLowerSet.isOpen_ofLowerSet_preimage, Finset.shatterer_eq, Topology.IsScott.isLowerSet_of_isClosed, isLowerSet_iff_forall_lt, Topology.IsLower.isLowerSet_of_isOpen, isLowerSet_iff_Iio_subset, isLowerSet_empty, IsUpperSet.toDual, exists_isClopen_upper_or_lower_of_ne, Relation.fibration_iff_isLowerSet_image_Iic, IsUpperSet.isLowerSet_preimage_coe, LowerSet.lower', exists_isClopen_lower_of_not_le, LowerSet.lower, lowerClosure_eq, InitialSeg.isLowerSet_range, isLowerSet_Iic
IsPartialOrder πŸ“–CompData
9 mathmath: IsLinearOrder.toIsPartialOrder, List.instIsPartialOrderIsPrefix, RelEmbedding.isPartialOrder, List.instIsPartialOrderIsInfix, instIsPartialOrderSetIsExtreme, List.instIsPartialOrderIsSuffix, IsPartialOrder.swap, instIsPartialOrderLe, instIsPartialOrderGe
IsPreorder πŸ“–CompData
9 mathmath: IsPreorder.swap, instIsPreorderPFunNatTuringReducible, instIsPreorderLe, IsEquiv.toIsPreorder, Order.Preimage.instIsPreorder, IsPartialOrder.toIsPreorder, Subrel.instIsPreorderSubtype, instIsPreorderGe, RelEmbedding.isPreorder
IsRefl πŸ“–MathDefβ€”
IsRelLowerSet πŸ“–MathDef
8 mathmath: isRelLowerSet_Icc_ge, Geometry.SimplicialComplex.isRelLowerSet_faces, IsLowerSet.isRelLowerSet_sep, isRelLowerSet_empty, RelLowerSet.isRelLowerSet, isLowerSet_subtype_iff_isRelLowerSet, isRelLowerSet_self, RelLowerSet.isRelLowerSet'
IsRelUpperSet πŸ“–MathDef
7 mathmath: isRelUpperSet_empty, IsUpperSet.isRelUpperSet_sep, RelUpperSet.isRelUpperSet', isRelUpperSet_Icc_le, isUpperSet_subtype_iff_isRelUpperSet, RelUpperSet.isRelUpperSet, isRelUpperSet_self
IsStrictOrder πŸ“–CompData
16 mathmath: Finsupp.Colex.isStrictOrder, RelEmbedding.isStrictOrder, Finsupp.Lex.isStrictOrder, Set.IsStrictOrder.subset, instIsStrictOrderGt, Order.Preimage.instIsStrictOrder, Pi.Colex.isStrictOrder, Subrel.instIsStrictOrderSubtype, DFinsupp.Lex.isStrictOrder, Finsupp.DegLex.isStrictOrder, IsStrictTotalOrder.toIsStrictOrder, IsStrictWeakOrder.toIsStrictOrder, IsStrictOrder.swap, Pi.Lex.isStrictOrder, DFinsupp.Colex.isStrictOrder, instIsStrictOrderLt
IsStrictTotalOrder πŸ“–CompData
6 mathmath: instIsStrictTotalOrderLt, IsStrictTotalOrder.swap, instIsStrictTotalOrderMonovaryOrder, instIsStrictTotalOrderOfIsWellOrder, instIsStrictTotalOrderGt, RelEmbedding.isStrictTotalOrder
IsStrictWeakOrder πŸ“–CompData
2 mathmath: Order.Preimage.instIsStrictWeakOrder, isStrictWeakOrder_of_isOrderConnected
IsSymm πŸ“–MathDefβ€”
IsTotal πŸ“–MathDef
1 mathmath: PartENat.isTotal
IsTrans πŸ“–CompData
40 mathmath: instIsTransAntisymmRel, Associated.instIsTrans, instIsTransDvd, instIsTransOfTrans, Finset.instIsTransSubset, Quotient.instIsTransLe, List.SublistForallβ‚‚.is_trans, OrderDual.instIsTransLE, SetTheory.PGame.instIsTransIdentical, FirstOrder.Language.Theory.Iff.instIsTransBoundedFormula, IsStrictOrder.toIsTrans, Finset.instIsTransSSubset, Set.instIsTransSubset, IsPreorder.toIsTrans, PSet.instIsTransSubset, IsTrans.decide, RelEmbedding.isTrans, ZFSet.IsOrdinal.isTrans, instIsTransGt, instIsTransLe, FirstOrder.Language.Theory.Imp.instIsTransBoundedFormula, ZFSet.isOrdinal_iff_isTrans, instIsTransLt, Sum.instIsTransLiftRel, IsTrans.swap, Subrel.instIsTransSubtype, Prod.instIsTransLex, instIsTransGe, AddCommGroup.instIsTransModEq, SetTheory.PGame.instIsTransSubsequent, ZFSet.instIsTransSubset, IsWellOrder.toIsTrans, instIsTransNatLeHAddOfNat, Set.instIsTransSSubset, Sum.instIsTransLex, Relation.instIsTransTransGen, OrderDual.instIsTransLT, Int.ModEq.instIsTrans, Relation.instIsTransReflTransGen, Order.Preimage.instIsTrans
IsTrichotomous πŸ“–MathDefβ€”
IsUpperSet πŸ“–MathDef
49 mathmath: UpperSet.upper', Topology.IsScott.isUpperSet_of_isOpen, IsLowerSet.div_left, isUpperSet_iff_forall_lt, upperClosure_eq, IsLowerSet.ofDual, Set.Intersecting.isUpperSet, Set.Intersecting.isUpperSet', isUpperSet_preimage_toDual_iff, Specialization.isOpen_toEquiv_preimage, IsLowerSet.sub_left, isLowerSet_preimage_toDual_iff, Topology.IsUpperSet.isOpen_iff_isUpperSet, exists_isClopen_upper_of_not_le, isUpperSet_Ioi, Topology.IsLowerSet.isClosed_iff_isUpper, Relation.fibration_iff_isUpperSet_image, IsLowerSet.compl, Topology.WithUpperSet.isUpperSet_toUpperSet_preimage, Topology.WithScott.isOpen_iff_isUpperSet_and_scottHausdorff_open', isUpperSet_Ici, isLowerSet_preimage_ofDual_iff, ClopenUpperSet.upper, Set.monotone_mem, isLowerSet_compl, isUpperSet_preimage_ofDual_iff, Topology.IsUpper.isUpperSet_of_isOpen, isUpperSet_compl, IsLowerSet.isUpperSet_preimage_coe, isUpperSet_setOf, Specialization.isUpperSet_ofEquiv_preimage, isUpperSet_empty, ClopenUpperSet.upper', UpperSet.upper, IsLowerSet.toDual, Topology.IsScott.isOpen_iff_isUpperSet_and_dirSupInaccOn, isUpperSet_subtype_iff_isRelUpperSet, IsLowerSet.inv, isUpperSet_univ, exists_isClopen_upper_or_lower_of_ne, Topology.IsLower.isUpperSet_of_isClosed, isUpperSet_iff_Ici_subset, Topology.IsScott.isOpen_iff_isUpperSet_and_scottHausdorff_open, Relation.fibration_iff_isUpperSet_image_Ici, PriestleySpace.priestley, isUpperSet_iff_Ioi_subset, Scott.IsOpen.isUpperSet, Topology.WithUpperSet.isOpen_ofUpperSet_preimage, IsLowerSet.neg
LowerSet πŸ“–CompData
189 mathmath: LowerSet.iSup_Iic, LowerSet.mem_compl_iff, OrderEmbedding.supIrredLowerSet_apply, LowerSet.coe_eq_univ, LowerSet.map_Iio, LowerSet.inf_prod, lowerClosure_union, LowerSet.sup_prod, LowerSet.compl_map, LowerSet.erase_le, LowerSet.mem_iSup_iff, IsOpen.lowerClosure, LowerSet.compl_iInf, LowerSet.mem_inf_iff, LowerSet.coe_mk, UpperSet.compl_sup, lowerClosure_infs, LowerSet.coe_subset_coe, upperSetIsoLowerSet_apply, lowerClosure_eq_top_iff, LowerSet.prod_self_lt_prod_self, LowerSet.compl_iInfβ‚‚, subset_lowerClosure, LowerSet.sdiff_le_left, LowerSet.disjoint_coe, Topology.IsLowerSet.nhdsKer_eq_lowerClosure, lowerClosure_image, LowerSet.coe_sdiff, LowerSet.Iic_top, LowerSet.bot_prod, lowerClosure_one, LowerSet.Iio_strictMono, UpperSet.compl_sSup, LowerSet.bot_lt_Iic, LowerSet.Iio_bot, IsClosed.lowerClosure_pi, IsClopen.lowerClosure_pi, LowerSet.coe_eq_empty, LowerSet.Iic_iInf, lowerClosure_eq_bot_iff, LowerSet.coe_map, Order.Ideal.toLowerSet_injective, LowerSet.compl_iSupβ‚‚, Topology.IsScott.lowerClosure_subset_closure, lowerClosure_univ, lowerClosure_interior_subset', LowerSet.sdiff_eq_left, LowerSet.Iic_one, LowerSet.coe_Iio, Topology.IsUpper.isClosed_lowerClosure, LowerSet.total_le, OrderIso.supIrredLowerSet_symm_apply, lowerClosure_prod, LowerSet.coe_sSup, LowerSet.compl_inf, UpperSet.compl_iSupβ‚‚, LowerSet.Iic_injective, lowerClosure_empty, LowerSet.coe_iicsInfHom, LowerSet.coe_iSup, upperSetIsoLowerSet_symm_apply, LowerSet.sdiff_lt_left, LowerSet.symm_map, mem_lowerClosure, LowerSet.coe_ssubset_coe, LowerSet.coe_sub, LowerSet.supIrred_iff_of_finite, LowerSet.mem_top, LowerSet.coe_sup, LowerSet.mem_iInfβ‚‚_iff, LowerSet.iicsInfHom_apply, LowerSet.coe_top, lowerClosure_eq_Iic_csSup, lowerClosure_interior_subset, LowerSet.Iio_eq_bot, LowerSet.coe_sInf, LowerSet.Iic_strictMono, UpperSet.coe_compl, UpperSet.compl_iSup, LowerSet.disjoint_prod, Topology.IsUpperSet.closure_eq_lowerClosure, OrderIso.supIrredLowerSet_apply, LowerSet.coe_erase, UpperSet.compl_top, LowerSet.top_prod_top, lowerClosure_zero, LowerSet.compl_top, LowerSet.Iic_iInfβ‚‚, LowerSet.coe_inf, Order.Ideal.top_toLowerSet, LowerSet.coe_prod, LowerSet.Iic_le, LowerSet.coe_Iic, LowerSet.coe_iInfβ‚‚, LowerSet.coe_iInf, lowerClosure_add, LowerSet.iicInfHom_apply, OrderEmbedding.supIrredLowerSet_surjective, coe_lowerClosure, LowerSet.mem_iSupβ‚‚_iff, LowerSet.mem_map, lowerClosure_sUnion, IsAntichain.maximal_mem_lowerClosure_iff_mem, LowerSet.compl_le_compl, LowerSet.mem_Iio_iff, Matroid.setOf_indep_eq, IsLowerSet.lowerClosure, LowerSet.erase_lt, add_lowerClosure, LowerSet.compl_iSup, ordConnected_iff_upperClosure_inter_lowerClosure, upperBounds_lowerClosure, LowerSet.mem_Iic_iff, LowerSet.Iic_sInf, lowerClosure_iUnion, lowerClosure_le, lowerClosure_vadd, LowerSet.mem_sInf_iff, LowerSet.prod_self_le_prod_self, LowerSet.ext_iff, BddAbove.lowerClosure, LowerSet.prod_eq_bot, LowerSet.notMem_bot, LowerSet.prod_sup, LowerSet.prod_le_prod_iff, Set.OrdConnected.upperClosure_inter_lowerClosure, LowerSet.coe_compl, LowerSet.compl_sSup, IsUpperSet.disjoint_lowerClosure_left, LowerSet.prod_bot, LowerSet.map_refl, Set.Finite.lowerClosure, LowerSet.coe_add, LowerSet.coe_div, UpperSet.compl_map, UpperSet.compl_inf, OrderEmbedding.birkhoffSet_apply, LowerSet.prod_inf_prod, LowerSet.compl_sInf, LowerSet.coe_iicInfHom, lowerClosure_min, UpperSet.compl_iInf, LowerSet.Iic_prod, UpperSet.compl_bot, LowerSet.instIsConcreteLE, UpperSet.mem_compl_iff, LowerSet.map_Iic, lowerClosure_mul, LowerSet.coe_iSupβ‚‚, Finset.Colex.le_iff_sdiff_subset_lowerClosure, lowerClosure_smul, LowerSet.coe_nonempty, LowerSet.mem_mk, HasUpperLowerClosure.isOpen_lowerClosure, LowerSet.compl_bot, LowerSet.prod_inf, lowerClosure_eq_top, lowerClosure_mul_distrib, UpperSet.compl_iInfβ‚‚, mul_lowerClosure, Topology.IsLowerSet.nhdsSet_eq_principal_lowerClosure, UpperSet.coe_sdiff, UpperSet.compl_sInf, lowerClosure_add_distrib, LowerSet.lower, LowerSet.mem_prod, gc_lowerClosure_coe, LowerSet.Iic_inf, LowerSet.lowerClosure, IsUpperSet.disjoint_lowerClosure_right, LowerSet.supIrred_Iic, Order.Ideal.coe_toLowerSet, LowerSet.carrier_eq_coe, lowerClosure_eq, LowerSet.Iic_zero, closure_lowerClosure_comm_pi, LowerSet.coe_bot, LowerSet.map_map, lowerClosure_mono, LowerSet.mem_sSup_iff, LowerSet.coe_mul, UpperSet.coe_erase, LowerSet.mem_iInf_iff, LowerSet.erase_eq, LowerSet.compl_sup, bddAbove_lowerClosure, LowerSet.Ici_prod_Ici, LowerSet.mem_sup_iff, UpperSet.compl_le_compl
MaximalFor πŸ“–MathDef
12 mathmath: Set.Finite.exists_maximalFor, maximalFor_eq_iff, IntermediateField.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, MinimalFor.maximalFor_of_strictAntiOn_comp, WeierstrassCurve.IsMinimal.val_Ξ”_maximal, WeierstrassCurve.isMinimal_iff, exists_maximalFor_of_wellFoundedGT, Set.Finite.exists_maximalFor', maximalFor_iff_forall_gt, Finset.exists_maximalFor, IntermediateField.FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, maximalFor_id
MinimalFor πŸ“–MathDef
11 mathmath: MaximalFor.minimalFor_of_strictAntiOn_comp, exists_minimalFor_of_wellFoundedLT, Finset.exists_minimalFor, Function.isMinimalFor_argminOn, Function.isMinimalFor_argmin, Set.Finite.exists_minimalFor', Set.Finite.exists_minimalFor, Set.IsPWO.exists_minimalFor, minimalFor_id, minimalFor_eq_iff, minimalFor_iff_forall_lt
RelLowerSet πŸ“–CompData
1 mathmath: RelLowerSet.isRelLowerSet
RelUpperSet πŸ“–CompData
1 mathmath: RelUpperSet.isRelUpperSet
Total πŸ“–MathDefβ€”
UpperSet πŸ“–CompData
207 mathmath: UpperSet.mem_Ioi_iff, UpperSet.coe_Ici, UpperSet.erase_eq, upperClosure_zero, LowerSet.mem_compl_iff, upperClosure_one, UpperSet.Ici_injective, UpperSet.coe_one, ClopenUpperSet.coe_toUpperSet, LowerSet.compl_map, upperClosure_eq, UpperSet.mem_inf_iff, LowerSet.compl_iInf, UpperSet.Ici_zero, BddBelow.upperClosure, FiniteArchimedeanClass.mem_addSubgroup_iff, UpperSet.compl_sup, MulArchimedeanClass.subgroup_strictAntiOn, UpperSet.mem_sInf_iff, bddBelow_upperClosure, ArchimedeanClass.addSubgroup_antitone, Topology.IsUpperSet.nhdsKer_eq_upperClosure, upperClosure_image, upperSetIsoLowerSet_apply, OrderEmbedding.infIrredUpperSet_surjective, UpperSet.sdiff_eq_left, LowerSet.compl_iInfβ‚‚, UpperSet.coe_add, IsClosed.upperClosure, UpperSet.carrier_eq_coe, IsUpperSet.upperClosure, LowerSet.coe_sdiff, UpperSet.Ici_lt_top, UpperSet.mem_iSup_iff, IsClopen.upperClosure_pi, UpperSet.mem_map, UpperSet.map_map, UpperSet.compl_sSup, upperClosure_sups, Topology.IsLowerSet.closure_eq_upperClosure, UpperSet.coe_inf, subset_upperClosure, UpperSet.coe_ssubset_coe, add_upperClosure, UpperSet.ext_iff, UpperSet.coe_eq_empty, upperClosure_interior_subset', OrderIso.infIrredUpperSet_symm_apply, UpperSet.Ici_iSup, UpperSet.coe_div, MulArchimedeanClass.mem_subgroup_iff, MulArchimedeanClass.subsemigroup_strictAnti, LowerSet.compl_iSupβ‚‚, UpperSet.Ioi_top, UpperSet.codisjoint_coe, upperClosure_interior_subset, UpperSet.mem_sup_iff, UpperSet.prod_le_prod_iff, UpperSet.Ici_sup, UpperSet.notMem_top, UpperSet.coe_prod, LowerSet.compl_inf, UpperSet.compl_iSupβ‚‚, UpperSet.map_refl, UpperSet.prod_top, UpperSet.Ici_sSup, UpperSet.top_prod, Topology.IsLower.isClosed_upperClosure, upperSetIsoLowerSet_symm_apply, UpperSet.mem_Ici_iff, UpperSet.coe_mk, UpperSet.symm_map, OrderEmbedding.infIrredUpperSet_apply, PrimitiveSpectrum.hull_finsetInf, upperClosure_mul, UpperSet.Ici_prod_Ici, closure_upperClosure_comm_pi, UpperSet.coe_iciSupHom, UpperSet.infIrred_Ici, lowerBounds_upperClosure, UpperSet.Ioi_eq_top, UpperSet.coe_iInfβ‚‚, UpperSet.mem_sSup_iff, UpperSet.coe_eq_univ, UpperSet.coe_compl, UpperSet.sup_prod, UpperSet.compl_iSup, UpperSet.le_Ici, FiniteArchimedeanClass.subsemigroup_eq_addSubgroup, upperClosure_min, LowerSet.coe_erase, upperClosure_eq_top_iff, ArchimedeanClass.mem_addSubgroup_iff, UpperSet.compl_top, UpperSet.mem_iInf_iff, ArchimedeanClass.addSubgroup_eq_bot, UpperSet.map_Ici, UpperSet.coe_mul, IsAntichain.minimal_mem_upperClosure_iff_mem, LowerSet.compl_top, UpperSet.coe_icisSupHom, UpperSet.lt_sdiff_left, UpperSet.upperClosure, UpperSet.Ici_one, IsOpen.upperClosure, LowerSet.compl_le_compl, UpperSet.coe_zero, Topology.IsUpperSet.nhdsSet_eq_principal_upperClosure, PrimitiveSpectrum.preimage_upperClosure_compl_finset, ArchimedeanClass.subsemigroup_strictAnti, upperClosure_empty, gc_upperClosure_coe, UpperSet.coe_top, UpperSet.icisSupHom_apply, upperClosure_prod, UpperSet.prod_inf, UpperSet.coe_iSup, UpperSet.mem_iSupβ‚‚_iff, LowerSet.compl_iSup, FiniteMulArchimedeanClass.mem_subgroup_iff, UpperSet.iciSupHom_apply, ordConnected_iff_upperClosure_inter_lowerClosure, OrderIso.infIrredUpperSet_apply, UpperSet.prod_self_le_prod_self, upperClosure_univ, UpperSet.mem_mk, upperClosure_eq_bot_iff, UpperSet.le_erase, UpperSet.coe_iInf, UpperSet.prod_self_lt_prod_self, IsLowerSet.disjoint_upperClosure_left, UpperSet.coe_sub, upperClosure_add_distrib, IsLowerSet.disjoint_upperClosure_right, HasUpperLowerClosure.isOpen_upperClosure, UpperSet.coe_iSupβ‚‚, upperClosure_sUnion, UpperSet.coe_nonempty, UpperSet.map_Ioi, UpperSet.mem_prod, coe_upperClosure, UpperSet.coe_sup, FiniteArchimedeanClass.addSubgroup_strictAnti, upperClosure_add, Set.OrdConnected.upperClosure_inter_lowerClosure, LowerSet.coe_compl, LowerSet.compl_sSup, UpperSet.Ioi_strictMono, upperClosure_vadd, FiniteMulArchimedeanClass.subgroup_eq_bot, le_upperClosure, UpperSet.upper, UpperSet.infIrred_iff_of_finite, MulArchimedeanClass.subgroup_antitone, UpperSet.compl_map, UpperSet.compl_inf, LowerSet.compl_sInf, ArchimedeanClass.addSubgroup_strictAntiOn, FiniteArchimedeanClass.submodule_strictAnti, UpperSet.compl_iInf, UpperSet.coe_map, UpperSet.coe_Ioi, UpperSet.compl_bot, FiniteMulArchimedeanClass.subsemigroup_eq_subgroup, UpperSet.mem_compl_iff, UpperSet.bot_prod_bot, upperClosure_mul_distrib, UpperSet.coe_sInf, UpperSet.Ici_le_Ioi, LowerSet.compl_bot, upperClosure_iUnion, UpperSet.prod_sup_prod, UpperSet.le_sdiff_left, UpperSet.Ici_bot, mul_upperClosure, UpperSet.compl_iInfβ‚‚, UpperSet.coe_sSup, UpperSet.coe_sdiff, Set.Finite.upperClosure, UpperSet.codisjoint_prod, UpperSet.compl_sInf, UpperSet.coe_subset_coe, FiniteMulArchimedeanClass.subgroup_strictAnti, IsClosed.upperClosure_pi, UpperSet.inf_prod, MulArchimedeanClass.subgroup_eq_bot, upperClosure_union, UpperSet.lt_erase, UpperSet.total_le, UpperSet.mem_iInfβ‚‚_iff, FiniteArchimedeanClass.addSubgroup_eq_bot, UpperSet.coe_bot, UpperSet.prod_eq_top, upperClosure_smul, UpperSet.coe_erase, UpperSet.Ici_prod, UpperSet.mem_bot, mem_upperClosure, upperClosure_eq_Ici_csInf, upperClosure_eq_bot, LowerSet.compl_sup, UpperSet.iInf_Ici, UpperSet.prod_sup, upperClosure_anti, UpperSet.compl_le_compl, UpperSet.Ici_iSupβ‚‚, UpperSet.Ici_strictMono
instTransOfIsTrans πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm πŸ“–β€”β€”β€”β€”β€”
antisymm' πŸ“–β€”β€”β€”β€”antisymm
antisymm_iff πŸ“–β€”β€”β€”β€”antisymm
refl
antisymm_of πŸ“–β€”β€”β€”β€”antisymm
antisymm_of' πŸ“–β€”β€”β€”β€”antisymm'
asymm πŸ“–β€”β€”β€”β€”β€”
asymm_of πŸ“–β€”β€”β€”β€”asymm
asymm_of_isTrans_of_irrefl πŸ“–β€”β€”β€”β€”trans
irrefl
comm πŸ“–β€”β€”β€”β€”symm
comm_of πŸ“–β€”β€”β€”β€”comm
empty_relation_apply πŸ“–β€”β€”β€”β€”β€”
eq_isEquiv πŸ“–mathematicalβ€”IsEquivβ€”β€”
extensional_of_trichotomous_of_irrefl πŸ“–β€”β€”β€”β€”trichotomous
irrefl
iff_isEquiv πŸ“–mathematicalβ€”IsEquivβ€”β€”
instIrreflEmptyRelation_mathlib πŸ“–β€”β€”β€”β€”β€”
instIsTransOfTrans πŸ“–mathematicalβ€”IsTransβ€”β€”
irrefl πŸ“–β€”β€”β€”β€”β€”
irrefl_of πŸ“–β€”β€”β€”β€”irrefl
ne_of_irrefl πŸ“–β€”β€”β€”β€”irrefl
ne_of_irrefl' πŸ“–β€”β€”β€”β€”irrefl
not_rel_of_subsingleton πŸ“–β€”β€”β€”β€”irrefl
of_eq πŸ“–β€”β€”β€”β€”refl
refl πŸ“–β€”β€”β€”β€”β€”
refl_of πŸ“–β€”β€”β€”β€”refl
rel_congr πŸ“–β€”β€”β€”β€”rel_congr_left
rel_congr_right
rel_congr_left πŸ“–β€”β€”β€”β€”trans_of
symm_of
rel_congr_right πŸ“–β€”β€”β€”β€”trans_of
symm_of
rel_of_subsingleton πŸ“–β€”β€”β€”β€”refl
symm_of πŸ“–β€”β€”β€”β€”symm
total_of πŸ“–β€”β€”β€”β€”β€”
trans πŸ“–β€”β€”β€”β€”IsTrans.trans
trans_of πŸ“–β€”β€”β€”β€”trans
trans_trichotomous_left πŸ“–β€”β€”β€”β€”trichotomous_of
trans
trans_trichotomous_right πŸ“–β€”β€”β€”β€”trichotomous_of
trans
transitive_of_trans πŸ“–mathematicalβ€”Transitiveβ€”IsTrans.trans
trichotomous πŸ“–β€”β€”β€”β€”β€”
trichotomous_of πŸ“–β€”β€”β€”β€”trichotomous

---

← Back to Index