Documentation Verification Report

Directed

๐Ÿ“ Source: Mathlib/Order/Directed.lean

Statistics

MetricCount
DefinitionsDirected, DirectedOn, IsCodirectedOrder, IsDirected, IsDirectedOrder
5
Theoremsdirected_ge, directed_le, directedOn_range, extend_bot, mono, mono_comp, directed_val, fst, insert, isCodirectedOrder, isDirectedOrder, is_bot_of_is_min, is_top_of_is_max, mono, mono', mono_comp, of_isCodirectedOrder, of_isDirectedOrder, pi, prod, proj, snd, directed, isTop, not_isMin, not_isMin', isBot, not_isMax, not_isMax', directed_ge, directed_le, forall_le_of_antitone, Directed, instIsCodirectedOrder, isDirected_ge, isDirected_le, instIsDirectedOrder, instIsCodirectedOrder, instIsDirectedOrder, directed, directedOn, to_isDirected, constant_of_monotoneOn_antitoneOn, constant_of_monotone_antitone, directedOn_iff_directed, directedOn_iff_isCodirectedOrder, directedOn_iff_isDirectedOrder, directedOn_image, directedOn_of_inf_mem, directedOn_of_sup_mem, directedOn_onFun_iff, directedOn_pair, directedOn_pair', directedOn_range, directedOn_singleton, directedOn_univ, directedOn_univ_iff, directed_comp, directed_id, directed_id_iff, directed_of, directed_of_isDirected_ge, directed_of_isDirected_le, directed_ofโ‚ƒ, exists_ge_ge, exists_le_le, exists_lt_of_directed_ge, exists_lt_of_directed_le, isBot_iff_isMin, isBot_or_exists_lt, isDirected_mono, isTop_iff_isMax, isTop_or_exists_gt
73
Total78

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
directed_ge ๐Ÿ“–mathematicalAntitoneDirected
Preorder.toLE
โ€”โ€”
directed_le ๐Ÿ“–mathematicalAntitoneDirected
Preorder.toLE
โ€”directed_of_isDirected_ge

Directed

Theorems

NameKindAssumesProvesValidatesDepends On
directedOn_range ๐Ÿ“–mathematicalDirectedDirectedOn
Set.range
โ€”directedOn_range
extend_bot ๐Ÿ“–mathematicalDirected
Preorder.toLE
Function.extend
Bot.bot
Pi.instBotForall
OrderBot.toBot
โ€”em
Function.extend_apply'
Function.Injective.extend_apply
mono ๐Ÿ“–โ€”Directedโ€”โ€”โ€”
mono_comp ๐Ÿ“–โ€”Directedโ€”โ€”directed_comp
mono

DirectedOn

Theorems

NameKindAssumesProvesValidatesDepends On
directed_val ๐Ÿ“–mathematicalDirectedOnDirected
Set
Set.instMembership
โ€”directedOn_iff_directed
fst ๐Ÿ“–mathematicalDirectedOnSet.imageโ€”mono_comp
mono
insert ๐Ÿ“–mathematicalReflexive
DirectedOn
Set
Set.instMembership
Set.instInsertโ€”Set.mem_insert
Set.mem_insert_of_mem
isCodirectedOrder ๐Ÿ“–mathematicalDirectedOnIsCodirectedOrder
Set.Elem
Set
Set.instMembership
โ€”directedOn_iff_isCodirectedOrder
isDirectedOrder ๐Ÿ“–mathematicalDirectedOnIsDirectedOrder
Set.Elem
Set
Set.instMembership
โ€”directedOn_iff_isDirectedOrder
is_bot_of_is_min ๐Ÿ“–โ€”DirectedOn
Preorder.toLE
Set
Set.instMembership
โ€”โ€”LE.le.trans'
is_top_of_is_max ๐Ÿ“–โ€”DirectedOn
Preorder.toLE
Set
Set.instMembership
โ€”โ€”LE.le.trans
mono ๐Ÿ“–โ€”DirectedOnโ€”โ€”mono'
mono' ๐Ÿ“–โ€”DirectedOnโ€”โ€”โ€”
mono_comp ๐Ÿ“–mathematicalDirectedOnSet.imageโ€”directedOn_image
mono
of_isCodirectedOrder ๐Ÿ“–mathematicalโ€”DirectedOnโ€”directedOn_iff_isCodirectedOrder
of_isDirectedOrder ๐Ÿ“–mathematicalโ€”DirectedOnโ€”directedOn_iff_isDirectedOrder
pi ๐Ÿ“–mathematicalDirectedOnSet.pi
Set.univ
โ€”โ€”
prod ๐Ÿ“–mathematicalDirectedOnSProd.sprod
Set
Set.instSProd
โ€”โ€”
proj ๐Ÿ“–mathematicalDirectedOnSet.imageโ€”mono_comp
mono
snd ๐Ÿ“–mathematicalDirectedOnSet.imageโ€”mono_comp
mono

IsDirected

Theorems

NameKindAssumesProvesValidatesDepends On
directed ๐Ÿ“–โ€”โ€”โ€”โ€”โ€”

IsMax

Theorems

NameKindAssumesProvesValidatesDepends On
isTop ๐Ÿ“–mathematicalIsMax
Preorder.toLE
IsTopโ€”exists_ge_ge
LE.le.trans
not_isMin ๐Ÿ“–mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
IsMinโ€”exists_lt_of_directed_le
isTop
IsMin.not_lt
LE.le.antisymm
not_isMin' ๐Ÿ“–mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
IsMinโ€”not_isMin
OrderDual.instNontrivial
OrderDual.isDirected_le
IsMin.toDual
toDual

IsMin

Theorems

NameKindAssumesProvesValidatesDepends On
isBot ๐Ÿ“–mathematicalIsMin
Preorder.toLE
IsBotโ€”exists_le_le
LE.le.trans'
not_isMax ๐Ÿ“–mathematicalIsMin
Preorder.toLE
PartialOrder.toPreorder
IsMaxโ€”exists_lt_of_directed_ge
isBot
IsMax.not_lt
LE.le.antisymm'
not_isMax' ๐Ÿ“–mathematicalIsMin
Preorder.toLE
PartialOrder.toPreorder
IsMaxโ€”not_isMax
OrderDual.instNontrivial
OrderDual.isDirected_ge
IsMax.toDual
toDual

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
directed_ge ๐Ÿ“–mathematicalMonotoneDirected
Preorder.toLE
โ€”โ€”
directed_le ๐Ÿ“–mathematicalMonotoneDirected
Preorder.toLE
โ€”directed_of_isDirected_le
forall_le_of_antitone ๐Ÿ“–โ€”Monotone
Antitone
Pi.hasLe
Preorder.toLE
โ€”โ€”exists_ge_ge

Order.IsIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
Directed ๐Ÿ“–mathematicalOrder.IsIdealDirectedOnโ€”โ€”

OrderBot

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCodirectedOrder ๐Ÿ“–mathematicalโ€”IsCodirectedOrderโ€”bot_le

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
isDirected_ge ๐Ÿ“–mathematicalโ€”IsCodirectedOrder
OrderDual
instLE
โ€”โ€”
isDirected_le ๐Ÿ“–mathematicalโ€”IsDirectedOrder
OrderDual
instLE
โ€”โ€”

OrderTop

Theorems

NameKindAssumesProvesValidatesDepends On
instIsDirectedOrder ๐Ÿ“–mathematicalโ€”IsDirectedOrderโ€”le_top

SemilatticeInf

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCodirectedOrder ๐Ÿ“–mathematicalโ€”IsCodirectedOrder
Preorder.toLE
PartialOrder.toPreorder
toPartialOrder
โ€”inf_le_left
inf_le_right

SemilatticeSup

Theorems

NameKindAssumesProvesValidatesDepends On
instIsDirectedOrder ๐Ÿ“–mathematicalโ€”IsDirectedOrder
Preorder.toLE
PartialOrder.toPreorder
toPartialOrder
โ€”le_sup_left
le_sup_right

Std.Total

Theorems

NameKindAssumesProvesValidatesDepends On
directed ๐Ÿ“–mathematicalโ€”Directedโ€”total_of
refl
directedOn ๐Ÿ“–mathematicalโ€”DirectedOnโ€”total_of
refl
to_isDirected ๐Ÿ“–mathematicalโ€”IsDirectedโ€”directed_id_iff
directed

(root)

Definitions

NameCategoryTheorems
Directed ๐Ÿ“–MathDef
21 mathmath: FirstOrder.Language.directed_distinctConstantsTheory, Function.directed_ptsOfPeriod_pnat, Field.Emb.Cardinal.directed_filtration, Module.End.genEigenspace_directed, IsChain.directed, Std.Total.directed, Antitone.directed_ge, directed_of_isDirected_le, directedOn_range, OmegaCompletePartialOrder.Chain.directed, DirectedOn.directed_val, CategoryTheory.Functor.ranges_directed, directed_id_iff, Monotone.directed_ge, directedOn_iff_directed, Antitone.directed_le, directed_comp, Monotone.directed_le, TopCat.partialSections.directed, directed_id, directed_of_isDirected_ge
DirectedOn ๐Ÿ“–MathDef
34 mathmath: directedOn_ge_Ici, directedOn_le_Iic, DirectedOn.of_isDirectedOrder, directedOn_ge_Icc, directedOn_ge_Ico, Order.Ideal.directed', Std.Total.directedOn, IsGreatest.directedOn, directedOn_le_Ioc, Directed.directedOn_range, Order.IsIdeal.Directed, SupClosed.directedOn, directedOn_image, Order.Ideal.directed, directedOn_iff_isCodirectedOrder, IsChain.directedOn, directedOn_le_Icc, directedOn_of_sup_mem, directedOn_range, InfClosed.codirectedOn, directedOn_univ_iff, Order.PFilter.directed, directedOn_onFun_iff, directedOn_iff_isDirectedOrder, directedOn_iff_directed, directedOn_pair, Order.isIdeal_iff, IsLeast.directedOn, DirectedOn.of_isCodirectedOrder, CStarAlgebra.directedOn_nonneg_ball, directedOn_of_inf_mem, directedOn_singleton, directedOn_pair', directedOn_univ
IsCodirectedOrder ๐Ÿ“–MathDef
7 mathmath: Filter.atBot_neBot_iff, SemilatticeInf.instIsCodirectedOrder, directedOn_iff_isCodirectedOrder, instIsCodirectedOrder, DirectedOn.isCodirectedOrder, OrderDual.isDirected_ge, OrderBot.instIsCodirectedOrder
IsDirected ๐Ÿ“–CompData
5 mathmath: Std.Total.to_isDirected, directedOn_univ_iff, directed_id_iff, isDirected_mono, Finset.isDirected_subset
IsDirectedOrder ๐Ÿ“–MathDef
10 mathmath: CategoryTheory.IsFiltered.isDirectedOrder, OrderDual.isDirected_le, directedOn_iff_isDirectedOrder, OrderTop.instIsDirectedOrder, Finset.isDirected_le, SemilatticeSup.instIsDirectedOrder, Module.fgSystem.instIsDirectedOrderSubtypeSubmoduleFG, Filter.atTop_neBot_iff, DirectedOn.isDirectedOrder, instIsDirectedOrder

Theorems

NameKindAssumesProvesValidatesDepends On
constant_of_monotoneOn_antitoneOn ๐Ÿ“–โ€”MonotoneOn
PartialOrder.toPreorder
AntitoneOn
DirectedOn
Preorder.toLE
Set
Set.instMembership
โ€”โ€”le_antisymm
LE.le.trans
constant_of_monotone_antitone ๐Ÿ“–โ€”Monotone
PartialOrder.toPreorder
Antitone
โ€”โ€”Monotone.forall_le_of_antitone
le_rfl
le_antisymm
directedOn_iff_directed ๐Ÿ“–mathematicalโ€”DirectedOn
Directed
Set
Set.instMembership
โ€”โ€”
directedOn_iff_isCodirectedOrder ๐Ÿ“–mathematicalโ€”DirectedOn
IsCodirectedOrder
Set.Elem
Set
Set.instMembership
โ€”directedOn_iff_directed
IsCodirectedOrder.eq_1
directedOn_iff_isDirectedOrder ๐Ÿ“–mathematicalโ€”DirectedOn
IsDirectedOrder
Set.Elem
Set
Set.instMembership
โ€”directedOn_iff_directed
IsDirectedOrder.eq_1
directedOn_image ๐Ÿ“–mathematicalโ€”DirectedOn
Set.image
Order.Preimage
โ€”โ€”
directedOn_of_inf_mem ๐Ÿ“–mathematicalSet
Set.instMembership
SemilatticeInf.toMin
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
โ€”directedOn_of_sup_mem
directedOn_of_sup_mem ๐Ÿ“–mathematicalSet
Set.instMembership
SemilatticeSup.toMax
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
โ€”le_sup_left
le_sup_right
directedOn_onFun_iff ๐Ÿ“–mathematicalโ€”DirectedOn
Function.onFun
Set.image
โ€”DirectedOn.mono_comp
Set.mem_image_of_mem
directedOn_pair ๐Ÿ“–mathematicalReflexiveDirectedOn
Set
Set.instInsert
Set.instSingletonSet
โ€”DirectedOn.insert
directedOn_singleton
directedOn_pair' ๐Ÿ“–mathematicalReflexiveDirectedOn
Set
Set.instInsert
Set.instSingletonSet
โ€”Set.pair_comm
directedOn_pair
directedOn_range ๐Ÿ“–mathematicalโ€”Directed
DirectedOn
Set.range
โ€”โ€”
directedOn_singleton ๐Ÿ“–mathematicalReflexiveDirectedOn
Set
Set.instSingletonSet
โ€”โ€”
directedOn_univ ๐Ÿ“–mathematicalโ€”DirectedOn
Set.univ
โ€”directed_of
directedOn_univ_iff ๐Ÿ“–mathematicalโ€”DirectedOn
Set.univ
IsDirected
โ€”directedOn_univ
directed_comp ๐Ÿ“–mathematicalโ€”Directed
Order.Preimage
โ€”โ€”
directed_id ๐Ÿ“–mathematicalโ€”Directedโ€”directed_of
directed_id_iff ๐Ÿ“–mathematicalโ€”Directed
IsDirected
โ€”directed_id
directed_of ๐Ÿ“–โ€”โ€”โ€”โ€”IsDirected.directed
directed_of_isDirected_ge ๐Ÿ“–mathematicalโ€”Directedโ€”directed_of_isDirected_le
OrderDual.isDirected_le
directed_of_isDirected_le ๐Ÿ“–mathematicalโ€”Directedโ€”Directed.mono_comp
directed_id
directed_ofโ‚ƒ ๐Ÿ“–โ€”โ€”โ€”โ€”directed_of
exists_ge_ge ๐Ÿ“–โ€”โ€”โ€”โ€”directed_of
exists_le_le ๐Ÿ“–โ€”โ€”โ€”โ€”directed_of
exists_lt_of_directed_ge ๐Ÿ“–mathematicalโ€”Preorder.toLT
PartialOrder.toPreorder
โ€”exists_pair_ne
isBot_or_exists_lt
LE.le.lt_of_ne
exists_lt_of_directed_le ๐Ÿ“–mathematicalโ€”Preorder.toLT
PartialOrder.toPreorder
โ€”exists_pair_ne
isTop_or_exists_gt
LE.le.lt_of_ne'
isBot_iff_isMin ๐Ÿ“–mathematicalโ€”IsBot
Preorder.toLE
IsMin
โ€”IsBot.isMin
IsMin.isBot
isBot_or_exists_lt ๐Ÿ“–mathematicalโ€”IsBot
Preorder.toLE
Preorder.toLT
โ€”IsMin.isBot
not_isMin_iff
em
isDirected_mono ๐Ÿ“–mathematicalโ€”IsDirectedโ€”IsDirected.directed
isTop_iff_isMax ๐Ÿ“–mathematicalโ€”IsTop
Preorder.toLE
IsMax
โ€”IsTop.isMax
IsMax.isTop
isTop_or_exists_gt ๐Ÿ“–mathematicalโ€”IsTop
Preorder.toLE
Preorder.toLT
โ€”IsMax.isTop
not_isMax_iff
em

---

โ† Back to Index