Documentation Verification Report

DirectedInverseSystem

📁 Source: Mathlib/Order/DirectedInverseSystem.lean

Statistics

MetricCount
Definitionslift₂, map, map₀, map₂, setoid, DirectedSystem, InverseSystem, IsNatEquiv, PEquivOn, equiv, restrict, globalEquiv, invLimEquiv, limit, pEquivOnGlue, pEquivOnLim, pEquivOnSucc, piEquivLim, piEquivSucc, piLT, piLTLim, piLTProj, piSplitLE
23
Theoremseq_of_le, exists_eq_mk, exists_eq_mk₂, exists_eq_mk₃, induction, induction₂, induction₃, lift_def, lift_injective, lift₂_def, lift₂_def₂, map_def, map₀_def, map₂_def, map₂_def₂, mk_injective, r_of_le, map_map, map_map', map_self, map_self', compat, ext, ext_iff, nat, restrict_equiv, globalEquiv_compatibility, globalEquiv_naturality, invLimEquiv_apply_coe, invLimEquiv_symm_apply_coe, isNatEquiv_piEquivLim, isNatEquiv_piEquivSucc, map_map, map_self, pEquivOn_apply_eq, piEquivSucc_self, piLTLim_apply, piLTLim_symm_apply, piLTProj_intro, piSplitLE_eq, piSplitLE_lt, unique_pEquivOn
42
Total65

DirectLimit

Definitions

NameCategoryTheorems
lift₂ 📖CompOp
2 mathmath: lift₂_def₂, lift₂_def
map 📖CompOp
1 mathmath: map_def
map₀ 📖CompOp
1 mathmath: map₀_def
map₂ 📖CompOp
2 mathmath: map₂_def₂, map₂_def
setoid 📖CompOp
40 mathmath: zsmul_def, zpow₀_def, map_def, exists_eq_mk₂, lift₂_def₂, map₂_def₂, ratCast_def, lift_def, lift₂_def, nsmul_def, vadd_def, neg_def, mul_def, natCast_def, Module.DirectLimit.linearEquiv_of, exists_eq_one, intCast_def, add_def, exists_eq_mk, smul_def, zpow_def, Module.DirectLimit.linearEquiv_symm_mk, Ring.DirectLimit.ringEquiv_of, exists_eq_zero, one_def, inv₀_def, mk_injective, map₂_def, npow_def, Ring.DirectLimit.ringEquiv_symm_mk, eq_of_le, r_of_le, div₀_def, zero_def, nnratCast_def, sub_def, inv_def, map₀_def, exists_eq_mk₃, div_def

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_le 📖mathematicalPreorder.toLEsetoid
DFunLike.coe
r_of_le
exists_eq_mk 📖mathematicalsetoid
exists_eq_mk₂ 📖mathematicalsetoidexists_ge_ge
eq_of_le
exists_eq_mk₃ 📖mathematicalsetoiddirected_of₃
instIsTransLe
eq_of_le
induction 📖setoid
induction₂ 📖setoidexists_eq_mk₂
induction₃ 📖setoidexists_eq_mk₃
lift_def 📖mathematicalDFunLike.coelift
setoid
lift_injective 📖mathematicalDFunLike.coeDirectLimit
lift
induction₂
lift₂_def 📖mathematicalDFunLike.coelift₂
setoid
le_rfl
lift₂_def₂
DirectedSystem.map_self'
lift₂_def₂ 📖mathematicalDFunLike.coe
Preorder.toLE
lift₂
setoid
map_def 📖mathematicalDFunLike.coemap
setoid
map₀_def 📖mathematicalDFunLike.coemap₀
setoid
exists_ge_ge
map₂_def 📖mathematicalDFunLike.coemap₂
setoid
lift₂_def
map₂_def₂ 📖mathematicalDFunLike.coe
Preorder.toLE
map₂
setoid
lift₂_def₂
mk_injective 📖mathematicalDFunLike.coesetoidQuotient.eq
r_of_le 📖mathematicalPreorder.toLEsetoid
DFunLike.coe
le_rfl
LE.le.trans
DirectedSystem.map_map'

DirectedSystem

Theorems

NameKindAssumesProvesValidatesDepends On
map_map 📖mathematicalPreorder.toLELE.le.trans
map_map' 📖mathematicalPreorder.toLEDFunLike.coe
LE.le.trans
map_map
map_self 📖mathematicalle_rfl
map_self' 📖mathematicalDFunLike.coe
le_rfl
map_self

InverseSystem

Definitions

NameCategoryTheorems
IsNatEquiv 📖MathDef
1 mathmath: PEquivOn.nat
PEquivOn 📖CompData
globalEquiv 📖CompOp
2 mathmath: globalEquiv_compatibility, globalEquiv_naturality
invLimEquiv 📖CompOp
2 mathmath: invLimEquiv_apply_coe, invLimEquiv_symm_apply_coe
limit 📖CompOp
5 mathmath: Field.Emb.Cardinal.equivLim_coherence, invLimEquiv_apply_coe, piLTLim_symm_apply, invLimEquiv_symm_apply_coe, piLTLim_apply
pEquivOnGlue 📖CompOp
pEquivOnLim 📖CompOp
pEquivOnSucc 📖CompOp
piEquivLim 📖CompOp
1 mathmath: isNatEquiv_piEquivLim
piEquivSucc 📖CompOp
2 mathmath: piEquivSucc_self, isNatEquiv_piEquivSucc
piLT 📖CompOp
10 mathmath: piEquivSucc_self, globalEquiv_compatibility, PEquivOn.compat, invLimEquiv_apply_coe, piSplitLE_eq, piLTLim_symm_apply, piSplitLE_lt, globalEquiv_naturality, invLimEquiv_symm_apply_coe, piLTLim_apply
piLTLim 📖CompOp
2 mathmath: piLTLim_symm_apply, piLTLim_apply
piLTProj 📖CompOp
6 mathmath: piLTProj_intro, invLimEquiv_apply_coe, piLTLim_symm_apply, globalEquiv_naturality, invLimEquiv_symm_apply_coe, piLTLim_apply
piSplitLE 📖CompOp
2 mathmath: piSplitLE_eq, piSplitLE_lt

Theorems

NameKindAssumesProvesValidatesDepends On
globalEquiv_compatibility 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
Order.succ
piLT
EquivLike.toFunLike
Equiv.instEquivLike
globalEquiv
Set
Set.instMembership
Set.Iio
Order.lt_succ_of_not_isMax
Order.le_succ
LT.lt.le
PEquivOn.compat
le_rfl
globalEquiv_naturality 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
piLT
EquivLike.toFunLike
Equiv.instEquivLike
globalEquiv
piLTProj
Order.le_succ
LT.lt.le
DFunLike.congr_fun
pEquivOn_apply_eq
IsLowerSet.inter
isLowerSet_Iic
PEquivOn.nat
le_rfl
invLimEquiv_apply_coe 📖mathematicalIsNatEquiv
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iio
Set
Set.instMembership
limit
piLT
piLTProj
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
invLimEquiv
invLimEquiv_symm_apply_coe 📖mathematicalIsNatEquiv
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iio
Set
Set.instMembership
limit
DFunLike.coe
Equiv
Set.Elem
piLT
piLTProj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
invLimEquiv
isNatEquiv_piEquivLim 📖mathematicalIsNatEquiv
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iio
Order.IsSuccPrelimit
Preorder.toLT
Set
Set.instMembership
limit
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
LT.lt.le
Set.Iic
piEquivLim
LT.lt.le
LE.le.eq_or_lt
map_self
piSplitLE_lt
piLTProj.congr_simp
piSplitLE_eq
piLTProj.eq_1
piLTLim_symm_apply
invLimEquiv_apply_coe
piEquivLim.eq_1
LE.le.trans_lt
isNatEquiv_piEquivSucc 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
Order.succ
EquivLike.toFunLike
Equiv.instEquivLike
Order.le_succ
IsNatEquiv
Set.Iic
piEquivSuccOrder.le_succ
Order.lt_succ_iff_of_not_isMax
Order.le_succ_iff_eq_or_le
map_self
piEquivSucc.eq_1
LT.lt.le
piSplitLE_lt
LE.le.trans
map_map
piLTProj.eq_1
le_rfl
LT.lt.trans_le
piSplitLE_eq
LE.le.trans_lt
map_map 📖mathematicalPreorder.toLELE.le.trans
map_self 📖mathematicalle_rfl
pEquivOn_apply_eq 📖mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instInter
Set.instMembership
PEquivOn.equivSet.inter_subset_left
Set.inter_subset_right
unique_pEquivOn
piEquivSucc_self 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
Set
Set.instMembership
Set.Iic
Order.succ
le_rfl
piLT
EquivLike.toFunLike
Equiv.instEquivLike
piEquivSucc
Set.Iio
Order.lt_succ_of_not_isMax
le_rfl
Order.lt_succ_of_not_isMax
piSplitLE_eq
piLTLim_apply 📖mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
Equiv
piLT
Set.Elem
limit
piLTProj
EquivLike.toFunLike
Equiv.instEquivLike
piLTLim
Set
Set.instMembership
Set.Iio
piLTLim_symm_apply 📖mathematicalOrder.IsSuccPrelimit
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Iio
DFunLike.coe
Equiv
Set.Elem
limit
piLT
piLTProj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
piLTLim
Equiv.right_inv
piLTProj_intro 📖mathematicalPreorder.toLE
Preorder.toLT
Set
Set.instMembership
Set.Iio
piLTProj
piSplitLE_eq 📖mathematicalDFunLike.coe
Equiv
piLT
PartialOrder.toPreorder
EquivLike.toFunLike
Equiv.instEquivLike
piSplitLE
Set
Set.instMembership
Set.Iic
le_rfl
le_rfl
piSplitLE_lt 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
DFunLike.coe
Equiv
piLT
EquivLike.toFunLike
Equiv.instEquivLike
piSplitLE
Set
Set.instMembership
Set.Iic
LT.lt.le
Set.Iio
LT.lt.le
LT.lt.ne
unique_pEquivOn 📖IsLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.lt_succ_of_not_isMax
PEquivOn.ext
Equiv.ext
LE.le.eq_or_lt
Order.lt_succ_iff_of_not_isMax
Order.le_succ
piLTProj_intro
LT.lt.le

InverseSystem.PEquivOn

Definitions

NameCategoryTheorems
equiv 📖CompOp
5 mathmath: restrict_equiv, compat, nat, ext_iff, InverseSystem.pEquivOn_apply_eq
restrict 📖CompOp
1 mathmath: restrict_equiv

Theorems

NameKindAssumesProvesValidatesDepends On
compat 📖mathematicalSet
Set.instMembership
Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsMax
Preorder.toLE
DFunLike.coe
Equiv
InverseSystem.piLT
EquivLike.toFunLike
Equiv.instEquivLike
equiv
Set.Iio
Order.lt_succ_of_not_isMax
ext 📖equivOrder.lt_succ_of_not_isMax
ext_iff 📖mathematicalequivext
nat 📖mathematicalInverseSystem.IsNatEquiv
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
equiv
restrict_equiv 📖mathematicalSet
Set.instHasSubset
equiv
restrict
Set.instMembership

(root)

Definitions

NameCategoryTheorems
DirectedSystem 📖CompData
13 mathmath: Submodule.FG.rTensor.directedSystem, Submodule.FG.lTensor.directedSystem, TensorProduct.instDirectedSystemCoeLinearMapIdRTensor, DirectedSystem.lTensor, AddCommGroup.DirectLimit.directedSystem, DirectedSystem.rTensor, Submodule.FG.directedSystem, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, Module.fgSystem.instDirectedSystemSubtypeSubmoduleFGMemValCoeLinearMapId, TensorProduct.instDirectedSystemCoeLinearMapIdLTensor, FirstOrder.Language.DirectedSystem.natLERec.directedSystem
InverseSystem 📖CompData
1 mathmath: Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor

---

← Back to Index