DirectedInverseSystem
📁 Source: Mathlib/Order/DirectedInverseSystem.lean
Statistics
DirectLimit
Definitions
| Name | Category | Theorems |
|---|---|---|
lift₂ 📖 | CompOp | |
map 📖 | CompOp | |
map₀ 📖 | CompOp | |
map₂ 📖 | CompOp | |
setoid 📖 | CompOp | 40 mathmath:zsmul_def, zpow₀_def, map_def, exists_eq_mk₂, lift₂_def₂, map₂_def₂, ratCast_def, lift_def, lift₂_def, nsmul_def, vadd_def, neg_def, mul_def, natCast_def, Module.DirectLimit.linearEquiv_of, exists_eq_one, intCast_def, add_def, exists_eq_mk, smul_def, zpow_def, Module.DirectLimit.linearEquiv_symm_mk, Ring.DirectLimit.ringEquiv_of, exists_eq_zero, one_def, inv₀_def, mk_injective, map₂_def, npow_def, Ring.DirectLimit.ringEquiv_symm_mk, eq_of_le, r_of_le, div₀_def, zero_def, nnratCast_def, sub_def, inv_def, map₀_def, exists_eq_mk₃, div_def |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eq_of_le 📖 | mathematical | Preorder.toLE | setoidDFunLike.coe | — | r_of_le |
exists_eq_mk 📖 | mathematical | — | setoid | — | — |
exists_eq_mk₂ 📖 | mathematical | — | setoid | — | exists_ge_geeq_of_le |
exists_eq_mk₃ 📖 | mathematical | — | setoid | — | directed_of₃instIsTransLeeq_of_le |
induction 📖 | — | setoid | — | — | — |
induction₂ 📖 | — | setoid | — | — | exists_eq_mk₂ |
induction₃ 📖 | — | setoid | — | — | exists_eq_mk₃ |
lift_def 📖 | mathematical | DFunLike.coe | liftsetoid | — | — |
lift_injective 📖 | mathematical | DFunLike.coe | DirectLimitlift | — | induction₂ |
lift₂_def 📖 | mathematical | DFunLike.coe | lift₂setoid | — | le_rfllift₂_def₂DirectedSystem.map_self' |
lift₂_def₂ 📖 | mathematical | DFunLike.coePreorder.toLE | lift₂setoid | — | — |
map_def 📖 | mathematical | DFunLike.coe | mapsetoid | — | — |
map₀_def 📖 | mathematical | DFunLike.coe | map₀setoid | — | exists_ge_ge |
map₂_def 📖 | mathematical | DFunLike.coe | map₂setoid | — | lift₂_def |
map₂_def₂ 📖 | mathematical | DFunLike.coePreorder.toLE | map₂setoid | — | lift₂_def₂ |
mk_injective 📖 | mathematical | DFunLike.coe | setoid | — | Quotient.eq |
r_of_le 📖 | mathematical | Preorder.toLE | setoidDFunLike.coe | — | le_rflLE.le.transDirectedSystem.map_map' |
DirectedSystem
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
map_map 📖 | mathematical | Preorder.toLE | LE.le.trans | — | — |
map_map' 📖 | mathematical | Preorder.toLE | DFunLike.coeLE.le.trans | — | map_map |
map_self 📖 | mathematical | — | le_rfl | — | — |
map_self' 📖 | mathematical | — | DFunLike.coele_rfl | — | map_self |
InverseSystem
Definitions
| Name | Category | Theorems |
|---|---|---|
IsNatEquiv 📖 | MathDef | |
PEquivOn 📖 | CompData | — |
globalEquiv 📖 | CompOp | |
invLimEquiv 📖 | CompOp | |
limit 📖 | CompOp | |
pEquivOnGlue 📖 | CompOp | — |
pEquivOnLim 📖 | CompOp | — |
pEquivOnSucc 📖 | CompOp | — |
piEquivLim 📖 | CompOp | |
piEquivSucc 📖 | CompOp | |
piLT 📖 | CompOp | |
piLTLim 📖 | CompOp | |
piLTProj 📖 | CompOp | |
piSplitLE 📖 | CompOp |
Theorems
InverseSystem.PEquivOn
Definitions
| Name | Category | Theorems |
|---|---|---|
equiv 📖 | CompOp | |
restrict 📖 | CompOp |
Theorems
(root)
Definitions
---