📁 Source: Mathlib/Order/Disjointed.lean
disjointed
disjiUnion_Iic_disjointed
exists_disjointed_le
sup_disjointed
disjointed_succ
disjointed_succ_sup
biUnion_Iic_disjointed
biUnion_Ioc_disjointed_of_monotone
biUnion_range_succ_disjointed
disjoint_disjointed
disjoint_disjointed_of_lt
disjointedRec
disjointed_apply
disjointed_bot
disjointed_eq_inf_compl
disjointed_eq_inter_compl
disjointed_eq_self
disjointed_le
disjointed_le_id
disjointed_of_isMin
disjointed_partialSups
disjointed_subset
disjointed_unique
disjointed_unique'
disjointed_zero
iSup_disjointed
iUnion_disjointed
partialSups_disjointed
preimage_find_eq_disjointed
sup_Ioc_disjointed_of_monotone
disjiUnion
Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset
instGeneralizedBooleanAlgebra
Pairwise.set_pairwise
Function.onFun
Disjoint
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
SetLike.coe
instSetLike
DFunLike.coe
OrderHom
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
instLattice
OrderHom.instFunLike
partialSups
nonempty_Iic
partialSups_apply
sup'_eq_sup
sup_eq_biUnion
disjiUnion_eq_biUnion
Pi.hasLe
Preorder.toLE
Finset.sup
Finset.univ
Pairwise
isEmpty_or_nonempty
le_rfl
Subsingleton.pairwise
IsEmpty.instSubsingleton
Equiv.symm_apply_apply
Finset.image_univ_equiv
Equiv.injective
Finset.ext
Finset.sup_biUnion
Finset.sup_congr
Finset.nonempty_Iic
Finset.sup'_eq_sup
Monotone
IsMax
Order.succ
GeneralizedBooleanAlgebra.toSDiff
partialSups_eq
SemilatticeSup.toMax
Order.succ_eq_iff_isMax
Order.lt_succ_iff_eq_or_lt_of_not_isMax
sdiff_sup_cancel
Order.le_succ
MeasureTheory.preimage_spanningSetsIndex_singleton
MeasureTheory.spanningSetsIndex_eq_iff
Fintype.sup_disjointed
disjointed_add_one
Monotone.disjointed_add_one
Monotone.disjointed_succ
MeasureTheory.NullMeasurableSet.disjointed
MeasureTheory.mem_disjointed_spanningSetsIndex
MeasureTheory.OuterMeasure.isCaratheodory_disjointed
disjointedRec_zero
MeasurableSet.disjointed
Monotone.disjointed_succ_sup
partialSups_add_one_eq_sup_disjointed
MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
Finset.disjiUnion_Iic_disjointed
MeasureTheory.sum_restrict_disjointed_spanningSets
MeasureTheory.IsSetRing.disjointed_mem
Monotone.disjointed_add_one_sup
Set.iUnion
Finset.instMembership
Finset.Iic
Set
BooleanAlgebra.toGeneralizedBooleanAlgebra
Set.instBooleanAlgebra
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
partialSups_eq_biSup
Set.iUnion_congr_Prop
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Finset.Ioc
LocallyFiniteOrder.toLocallyFiniteOrderBot
Set.instSDiff
Finset.sup_set_eq_biUnion
Finset.range
Nat.instPreorder
Nat.instOrderBot
Nat.instLocallyFiniteOrder
Nat.range_succ_eq_Iic
pairwise_disjoint_on
Preorder.toLT
Disjoint.mono_left
Finset.le_sup
Finset.mem_Iio
disjoint_sdiff_self_right
disjointed.eq_1
Finset.induction
Finset.sup_empty
sdiff_bot
Finset.sup_insert
sup_comm
sdiff_sdiff
Finset.Iio
Bot.bot
OrderBot.toBot
isMin_bot
CompleteBooleanAlgebra.toBooleanAlgebra
SemilatticeInf.toMin
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Compl.compl
BooleanAlgebra.toCompl
Finset.sup_eq_iSup
iSup_congr_Prop
sdiff_eq
compl_iSup
Set.instInter
Set.iInter
Set.instCompl
sdiff_eq_left
disjoint_iff
Finset.sup_inf_distrib_left
Disjoint.symm
Finset.sup_bot
sdiff_le
IsMin
Finset.coe_eq_empty
Finset.coe_Iio
Set.Iio_eq_empty_iff
sdiff_eq_symm
LE.le.trans
le_partialSups
sdiff_sdiff_eq_sdiff_sup
Finset.sup_mono
Finset.Iio_subset_Iic_self
sup_eq_right
Finset.notMem_Iio_self
Finset.Iic_eq_cons_Iio
Finset.sup_cons
sup_sdiff_left_self
LE.le.trans_lt
Set.instHasSubset
Order.lt_succ_iff_of_not_isMax
LT.lt.ne
iSup
ConditionallyCompletePartialOrderSup.toSupSet
iSup_eq_iSup_of_partialSups_eq_partialSups
Finset.cons.congr_simp
Finset.sup'_congr
lt_or_eq_of_le
lt_of_lt_of_le
Finset.card_cons
Finset.card_le_card
sdiff_sup_self
OrderHom.ext
Set.instMembership
Set.preimage
Nat.find
Set.instSingletonSet
Set.ext
LinearLocallyFiniteOrder.instIsSuccArchimedeanOfLocallyFiniteOrder
Finset.Ioc_eq_empty_of_le
sdiff_self
Finset.insert_Ioc_right_eq_Ioc_succ_of_not_isMax
sdiff_sup_sdiff_cancel
---
← Back to Index