Documentation Verification Report

CardinalInter

πŸ“ Source: Mathlib/Order/Filter/CardinalInter.lean

Statistics

MetricCount
DefinitionsCardinalInterFilter, CardinalGenerateSets, cardinalGenerate, ofCardinalInter, ofCardinalUnion
5
Theoremscardinal_sInter_mem, of_cardinalInterFilter_of_le, of_cardinalInterFilter_of_lt, toCountableInterFilter, toCardinalInterFilter, cardinal_bInter, cardinal_bUnion, cardinal_iInter, cardinal_iUnion, cardinal_bInter, cardinal_bUnion, cardinal_iInter, cardinal_iUnion, cardinalGenerate_isGreatest, cardinalInterFilter_aleph0, cardinalInterFilter_bot, cardinalInterFilter_inf, cardinalInterFilter_inf_eq, cardinalInterFilter_principal, cardinalInterFilter_sup, cardinalInterFilter_sup_eq, cardinalInterFilter_top, cardinalInter_ofCardinalGenerate, cardinalInter_ofCardinalInter, cardinalInter_ofCardinalUnion, cardinal_bInter_mem, cardinal_iInter_mem, eventually_cardinal_ball, eventually_cardinal_forall, instCardinalInterFilterComap, instCardinalInterFilterMap, le_cardinalGenerate_iff_of_cardinalInterFilter, mem_cardinalGenerate_iff, mem_cardinaleGenerate_iff, mem_ofCardinalInter, mem_ofCardinalUnion, cardinalInterFilter_aleph_one_iff, cardinal_sInter_mem
38
Total43

CardinalInterFilter

Theorems

NameKindAssumesProvesValidatesDepends On
cardinal_sInter_mem πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Set
Filter
Filter.instMembership
Set.sInterβ€”β€”
of_cardinalInterFilter_of_le πŸ“–mathematicalCardinal
Cardinal.instLE
CardinalInterFilterβ€”cardinal_sInter_mem
lt_of_lt_of_le
of_cardinalInterFilter_of_lt πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
CardinalInterFilterβ€”of_cardinalInterFilter_of_le
LT.lt.le
toCountableInterFilter πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.aleph0
CountableInterFilterβ€”cardinal_sInter_mem
lt_of_le_of_lt
Set.Countable.le_aleph0

CountableInterFilter

Theorems

NameKindAssumesProvesValidatesDepends On
toCardinalInterFilter πŸ“–mathematicalβ€”CardinalInterFilter
DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Cardinal.instLE
instFunLikeOrderEmbedding
Cardinal.aleph
Ordinal.one
β€”countable_sInter_mem
Cardinal.countable_iff_lt_aleph_one

Filter

Definitions

NameCategoryTheorems
CardinalGenerateSets πŸ“–CompDataβ€”
cardinalGenerate πŸ“–CompOp
5 mathmath: mem_cardinaleGenerate_iff, le_cardinalGenerate_iff_of_cardinalInterFilter, cardinalInter_ofCardinalGenerate, cardinalGenerate_isGreatest, mem_cardinalGenerate_iff
ofCardinalInter πŸ“–CompOp
2 mathmath: cardinalInter_ofCardinalInter, mem_ofCardinalInter
ofCardinalUnion πŸ“–CompOp
2 mathmath: cardinalInter_ofCardinalUnion, mem_ofCardinalUnion

Theorems

NameKindAssumesProvesValidatesDepends On
cardinalGenerate_isGreatest πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
IsGreatest
Filter
Preorder.toLE
instPartialOrder
setOf
CardinalInterFilter
Set
Set.instHasSubset
sets
cardinalGenerate
β€”Nat.instAtLeastTwoHAddOfNat
cardinalInter_ofCardinalGenerate
le_cardinalGenerate_iff_of_cardinalInterFilter
cardinalInterFilter_aleph0 πŸ“–mathematicalβ€”CardinalInterFilter
Cardinal.aleph0
β€”β€”
cardinalInterFilter_bot πŸ“–mathematicalβ€”CardinalInterFilter
Bot.bot
Filter
instBot
β€”principal_empty
cardinalInterFilter_principal
cardinalInterFilter_inf πŸ“–mathematicalβ€”CardinalInterFilter
Filter
instInf
Cardinal
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
β€”CardinalInterFilter.of_cardinalInterFilter_of_le
inf_le_left
inf_le_right
cardinalInterFilter_inf_eq
cardinalInterFilter_inf_eq πŸ“–mathematicalβ€”CardinalInterFilter
Filter
instInf
β€”cardinal_bInter_mem
mem_of_superset
inter_mem_inf
Set.subset_sInter
Set.inter_subset_inter
Set.iInter_subset_of_subset
Set.iInter_subset
cardinalInterFilter_principal πŸ“–mathematicalβ€”CardinalInterFilter
principal
β€”Set.subset_sInter
cardinalInterFilter_sup πŸ“–mathematicalβ€”CardinalInterFilter
Filter
instSup
Cardinal
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
β€”CardinalInterFilter.of_cardinalInterFilter_of_le
inf_le_left
inf_le_right
cardinalInterFilter_sup_eq
cardinalInterFilter_sup_eq πŸ“–mathematicalβ€”CardinalInterFilter
Filter
instSup
β€”cardinal_sInter_mem
cardinalInterFilter_top πŸ“–mathematicalβ€”CardinalInterFilter
Top.top
Filter
instTop
β€”principal_univ
cardinalInterFilter_principal
cardinalInter_ofCardinalGenerate πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
CardinalInterFilter
cardinalGenerate
β€”Nat.instAtLeastTwoHAddOfNat
cardinalInter_ofCardinalInter
cardinalInter_ofCardinalInter πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
Set.instMembership
Set.sInter
CardinalInterFilter
ofCardinalInter
β€”Nat.instAtLeastTwoHAddOfNat
cardinalInter_ofCardinalUnion πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
Set.instMembership
Set.sUnion
CardinalInterFilter
ofCardinalUnion
β€”Nat.instAtLeastTwoHAddOfNat
cardinalInter_ofCardinalInter
cardinal_bInter_mem πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Set
Filter
instMembership
Set.iInter
Set.instMembership
β€”Set.biInter_eq_iInter
cardinal_iInter_mem
cardinal_iInter_mem πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set
Filter
instMembership
Set.iInter
β€”Set.sInter_range
cardinal_sInter_mem
lt_of_le_of_lt
Cardinal.mk_range_le
Set.forall_mem_range
eventually_cardinal_ball πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Eventuallyβ€”Set.setOf_forall
cardinal_bInter_mem
eventually_cardinal_forall πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Eventuallyβ€”Set.setOf_forall
cardinal_iInter_mem
instCardinalInterFilterComap πŸ“–mathematicalβ€”CardinalInterFilter
comap
β€”cardinal_bInter_mem
Set.preimage_iInter
Set.iInterβ‚‚_mono
Function.sometimes_spec
instCardinalInterFilterMap πŸ“–mathematicalβ€”CardinalInterFilter
map
β€”Set.sInter_eq_biInter
Set.preimage_iInterβ‚‚
cardinal_bInter_mem
le_cardinalGenerate_iff_of_cardinalInterFilter πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Filter
Preorder.toLE
instPartialOrder
cardinalGenerate
Set
Set.instHasSubset
sets
β€”Nat.instAtLeastTwoHAddOfNat
subset_trans
Set.instIsTransSubset
univ_mem
mem_of_superset
cardinal_sInter_mem
mem_cardinalGenerate_iff πŸ“–mathematicalCardinal.IsRegularSet
Filter
instMembership
cardinalGenerate
Cardinal.IsRegular.nat_lt
Set.instHasSubset
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Set.sInter
β€”Cardinal.IsRegular.nat_lt
Set.singleton_subset_iff
Cardinal.mk_fintype
Fintype.card_unique
Nat.cast_one
Set.sInter_singleton
Set.instReflSubset
Set.empty_subset
Cardinal.mk_eq_zero
Set.instIsEmptyElemEmptyCollection
Set.sInter_empty
Cardinal.card_biUnion_lt_iff_forall_of_isRegular
Set.subset_sInter
subset_trans
Set.instIsTransSubset
Set.sInter_subset_sInter
Set.subset_iUnionβ‚‚
cardinalInter_ofCardinalGenerate
mem_of_superset
cardinal_sInter_mem
mem_cardinaleGenerate_iff πŸ“–mathematicalCardinal.IsRegularSet
Filter
instMembership
cardinalGenerate
Cardinal.IsRegular.nat_lt
Set.instHasSubset
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Set.sInter
β€”mem_cardinalGenerate_iff
mem_ofCardinalInter πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
Set.instMembership
Set.sInter
Filter
instMembership
ofCardinalInter
β€”Nat.instAtLeastTwoHAddOfNat
mem_ofCardinalUnion πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
Set.instMembership
Set.sUnion
Filter
instMembership
ofCardinalUnion
Compl.compl
Set.instCompl
β€”Nat.instAtLeastTwoHAddOfNat

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
cardinal_bInter πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Filter.EventuallyEq
Set.iInter
Set
Set.instMembership
β€”Filter.EventuallyLE.antisymm
Filter.EventuallyLE.cardinal_bInter
le
symm
cardinal_bUnion πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Filter.EventuallyEq
Set.iUnion
Set
Set.instMembership
β€”Filter.EventuallyLE.antisymm
Filter.EventuallyLE.cardinal_bUnion
le
symm
cardinal_iInter πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Filter.EventuallyEq
Set.iInterβ€”Filter.EventuallyLE.antisymm
Filter.EventuallyLE.cardinal_iInter
le
symm
cardinal_iUnion πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Filter.EventuallyEq
Set.iUnionβ€”Filter.EventuallyLE.antisymm
Filter.EventuallyLE.cardinal_iUnion
le
symm

Filter.EventuallyLE

Theorems

NameKindAssumesProvesValidatesDepends On
cardinal_bInter πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Filter.EventuallyLE
Prop.le
Set.iInter
Set
Set.instMembership
β€”Set.biInter_eq_iInter
cardinal_iInter
cardinal_bUnion πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Filter.EventuallyLE
Prop.le
Set.iUnion
Set
Set.instMembership
β€”Set.biUnion_eq_iUnion
cardinal_iUnion
cardinal_iInter πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Filter.EventuallyLE
Prop.le
Set.iInterβ€”Filter.Eventually.mono
Filter.eventually_cardinal_forall
Set.mem_iInter
cardinal_iUnion πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Filter.EventuallyLE
Prop.le
Set.iUnionβ€”Filter.Eventually.mono
Filter.eventually_cardinal_forall
Set.mem_iUnion

(root)

Definitions

NameCategoryTheorems
CardinalInterFilter πŸ“–CompData
19 mathmath: Filter.instCardinalInterFilter_cocardinal, Filter.cardinalInterFilter_inf_eq, Filter.cardinalInterFilter_bot, Filter.cardinalInterFilter_sup, Filter.cardinalInter_ofCardinalInter, CardinalInterFilter.of_cardinalInterFilter_of_le, Filter.instCardinalInterFilterMap, cardinalInterFilter_aleph_one_iff, Filter.cardinalInter_ofCardinalUnion, Filter.cardinalInterFilter_aleph0, Filter.cardinalInterFilter_principal, CardinalInterFilter.of_cardinalInterFilter_of_lt, Filter.cardinalInterFilter_top, Filter.cardinalInter_ofCardinalGenerate, CountableInterFilter.toCardinalInterFilter, Filter.cardinalInterFilter_inf, Filter.instCardinalInterFilterComap, Filter.cardinalInterFilter_sup_eq, Filter.cardinalGenerate_isGreatest

Theorems

NameKindAssumesProvesValidatesDepends On
cardinalInterFilter_aleph_one_iff πŸ“–mathematicalβ€”CardinalInterFilter
DFunLike.coe
OrderEmbedding
Ordinal
Cardinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
Cardinal.instLE
instFunLikeOrderEmbedding
Cardinal.aleph
Ordinal.one
CountableInterFilter
β€”CardinalInterFilter.cardinal_sInter_mem
Cardinal.countable_iff_lt_aleph_one
CountableInterFilter.toCardinalInterFilter
cardinal_sInter_mem πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Set
Filter
Filter.instMembership
Set.sInter
β€”Filter.mem_of_superset
Set.sInter_subset_of_mem
CardinalInterFilter.cardinal_sInter_mem

---

← Back to Index