Documentation Verification Report

Cocardinal

📁 Source: Mathlib/Order/Filter/Cocardinal.lean

Statistics

MetricCount
Definitionscocardinal, cocountable
2
Theoremscocardinal_aleph0_eq_cofinite, cocardinal_inf_principal_neBot_iff, compl_mem_cocardinal_of_card_lt, eventually_cocardinal, eventually_cocardinal_ne, eventually_cocardinal_notMem_of_card_lt, frequently_cocardinal, frequently_cocardinal_mem, hasBasis_cocardinal, instCardinalInterFilter_cocardinal, mem_cocardinal, mem_cocountable, eventually_cocardinal_notMem, compl_mem_cocardinal
14
Total16

Filter

Definitions

NameCategoryTheorems
cocardinal 📖CompOp
13 mathmath: instCardinalInterFilter_cocardinal, compl_mem_cocardinal_of_card_lt, mem_cocardinal, frequently_cocardinal, eventually_cocardinal_ne, cocardinal_aleph0_eq_cofinite, hasBasis_cocardinal, eventually_cocardinal, eventually_cocardinal_notMem_of_card_lt, cocardinal_inf_principal_neBot_iff, frequently_cocardinal_mem, Set.Finite.compl_mem_cocardinal, Finset.eventually_cocardinal_notMem
cocountable 📖CompOp
1 mathmath: mem_cocountable

Theorems

NameKindAssumesProvesValidatesDepends On
cocardinal_aleph0_eq_cofinite 📖mathematicalcocardinal
Cardinal.aleph0
Cardinal.isRegular_aleph0
cofinite
ext
Cardinal.isRegular_aleph0
cocardinal_inf_principal_neBot_iff 📖mathematicalCardinal.IsRegularNeBot
Filter
instInf
cocardinal
principal
Cardinal
Cardinal.instLE
Set.Elem
frequently_mem_iff_neBot
frequently_cocardinal
compl_mem_cocardinal_of_card_lt 📖mathematicalCardinal.IsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Set
Filter
instMembership
cocardinal
Compl.compl
Set.instCompl
mem_cocardinal
compl_compl
eventually_cocardinal 📖mathematicalCardinal.IsRegularEventually
cocardinal
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
setOf
eventually_cocardinal_ne 📖mathematicalCardinal.IsRegularEventually
cocardinal
Cardinal.mk_fintype
Fintype.card_unique
Nat.cast_one
Cardinal.IsRegular.nat_lt
eventually_cocardinal_notMem_of_card_lt 📖mathematicalCardinal.IsRegular
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Eventually
Set
Set.instMembership
cocardinal
compl_mem_cocardinal_of_card_lt
frequently_cocardinal 📖mathematicalCardinal.IsRegularFrequently
cocardinal
Cardinal
Cardinal.instLE
Set.Elem
setOf
frequently_cocardinal_mem 📖mathematicalCardinal.IsRegularFrequently
Set
Set.instMembership
cocardinal
Cardinal
Cardinal.instLE
Set.Elem
frequently_cocardinal
hasBasis_cocardinal 📖mathematicalCardinal.IsRegularHasBasis
Set
cocardinal
setOf
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Compl.compl
Set.instCompl
Eq.subset
Set.instReflSubset
compl_compl
lt_of_le_of_lt
Cardinal.mk_le_mk_of_subset
Set.compl_subset_comm
instCardinalInterFilter_cocardinal 📖mathematicalCardinal.IsRegularCardinalInterFilter
cocardinal
mem_cocardinal
Set.compl_sInter
lt_of_le_of_lt
Cardinal.mk_sUnion_le
Cardinal.mul_lt_of_lt
Cardinal.IsRegular.aleph0_le
Cardinal.mk_image_le
Cardinal.iSup_lt_of_isRegular
mem_cocardinal 📖mathematicalCardinal.IsRegularSet
Filter
instMembership
cocardinal
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Compl.compl
Set.instCompl
mem_cocountable 📖mathematicalSet
Filter
instMembership
cocountable
Set.Countable
Compl.compl
Set.instCompl
Cardinal.countable_iff_lt_aleph_one
Cardinal.isRegular_aleph_one
mem_cocardinal

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_cocardinal_notMem 📖mathematicalCardinal.IsRegularFilter.Eventually
Finset
instMembership
Filter.cocardinal
Filter.eventually_cocardinal_notMem_of_card_lt
LT.lt.trans_le
Cardinal.finset_card_lt_aleph0
Cardinal.IsRegular.aleph0_le

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
compl_mem_cocardinal 📖mathematicalCardinal.IsRegularSet
Filter
Filter.instMembership
Filter.cocardinal
Compl.compl
Set.instCompl
Filter.compl_mem_cocardinal_of_card_lt
lt_of_lt_of_le
lt_aleph0
Cardinal.IsRegular.aleph0_le

---

← Back to Index