Documentation Verification Report

Cofinite

πŸ“ Source: Mathlib/Order/Filter/Cofinite.lean

Statistics

MetricCount
Definitionscofinite
1
Theoremscofinite_of_finite_preimage_singleton, countable_compl_preimage_ker, exists_forall_ge, exists_forall_le, exists_within_forall_ge, exists_within_forall_le, atBot_le_cofinite, atTop_le_cofinite, cofinite_eq_bot, cofinite_eq_bot_iff, cofinite_inf_principal_neBot_iff, cofinite_neBot, comap_cofinite_le, coprod_cofinite, coprodα΅’_cofinite, countable_compl_ker, disjoint_cofinite_left, disjoint_cofinite_right, eventually_cofinite, eventually_cofinite_ne, frequently_cofinite_iff_infinite, frequently_cofinite_mem_iff_infinite, hasBasis_cofinite, le_cofinite_iff_compl_singleton_mem, le_cofinite_iff_eventually_ne, map_piMap_pi, map_piMap_pi_finite, mem_cofinite, univ_pi_mem_pi, eventually_cofinite_notMem, comap_cofinite_eq, nat_tendsto_atTop, tendsto_cofinite, le_map_cofinite, update_eventuallyEq, update_eventuallyEq_cofinite, cofinite_eq_atTop, eventually_pos, frequently_atTop_iff_infinite, cofinite_inf_principal_compl, cofinite_inf_principal_diff, compl_mem_cofinite, eventually_cofinite_notMem, cofinite_inf_principal_neBot, frequently_cofinite, infinite_iff_frequently_cofinite
46
Total47

Filter

Definitions

NameCategoryTheorems
cofinite πŸ“–CompOp
146 mathmath: RestrictedProduct.single_injective, EisensteinSeries.linear_inv_isBigO_left, RestrictedProduct.mulSingle_inv, Int.cast_complex_isTheta_cast_real, IsClosed.tendsto_coe_cofinite_of_isDiscrete, mem_cofinite, frequently_cofinite_iff_infinite, Associates.finite_factors, Tendsto.cofinite_of_finite_preimage_singleton, Function.Surjective.le_map_cofinite, eventually_cofinite_ne, RestrictedProduct.mulSingle_zpow, RestrictedProduct.single_eq_zero_iff, AlgebraicGeometry.Scheme.Hom.tendsto_cofinite_cofinite, RestrictedProduct.single_mul, RestrictedProduct.instLocallyCompactSpaceCoeCofiniteOfSubgroupClassOfIsTopologicalGroupOfCompactSpaceSubtypeMem, MeasureTheory.measure_liminf_cofinite_eq_zero, comap_cofinite_le, Subgroup.tendsto_coe_cofinite_of_discrete, le_cofinite_iff_compl_singleton_mem, RestrictedProduct.isOpenEmbedding_structureMap, Function.Injective.comap_cofinite_eq, nhdsNE_le_cofinite, ModularGroup.tendsto_abs_re_smul, hasBasis_cofinite, Bornology.le_cofinite, ENNReal.tendsto_cofinite_zero_of_tsum_ne_top, cofinite.limsup_set_eq, RestrictedProduct.mul_single, RestrictedProduct.mulSingle_injective, AddSubgroup.tendsto_zmultiples_subtype_cofinite, Multipliable.tendsto_cofinite_one, RestrictedProduct.isOpen_forall_imp_mem, Set.Infinite.exists_accPt_cofinite_inf_principal, RestrictedProduct.instWeaklyLocallyCompactSpaceCofiniteOfFactForallIsOpenOfCompactSpaceElem, Int.cofinite_eq, MonoidHom.tendsto_coe_cofinite_of_discrete, coLindelof_le_cofinite, CofiniteTopology.nhds_eq, RestrictedProduct.continuous_dom_prod, RestrictedProduct.isOpen_forall_mem, RestrictedProduct.mulSingle_eq_of_ne', cofinite_neBot, coprod_cofinite, le_cofinite_iff_eventually_ne, cofinite.bliminf_set_eq, eventually_cofinite, disjoint_cofinite_right, cofinite_inf_principal_neBot_iff, disjoint_cofinite_left, Set.Infinite.exists_accPt_cofinite_inf_principal_of_subset_isCompact, RestrictedProduct.coe_single_apply, MeasureTheory.measure_limsup_cofinite_eq_zero, RestrictedProduct.single_zero, RestrictedProduct.locallyCompactSpace_of_group, RestrictedProduct.comp_single, RestrictedProduct.single_add, Set.Infinite.cofinite_inf_principal_neBot, RestrictedProduct.single_sub, RestrictedProduct.mulSingle_mul, isProperMap_iff_isClosedMap_and_tendsto_cofinite, RestrictedProduct.nhds_eq_map_structureMap, Finset.eventually_cofinite_notMem, AddMonoidHom.tendsto_coe_cofinite_of_discrete, ModularGroup.tendsto_normSq_coprime_pair, Int.tendsto_zmultiplesHom_cofinite, EisensteinSeries.linear_inv_isBigO_right_add, MvPowerSeries.hasEval_def, AddSubgroup.tendsto_coe_cofinite_of_discrete, RestrictedProduct.isTopologicalRing, frequently_cofinite_mem_iff_infinite, EisensteinSeries.isBigO_linear_add_const_vec, Bornology.le_cofinite', atBot_le_cofinite, IsClosed.tendsto_coe_cofinite_of_discreteTopology, cocardinal_aleph0_eq_cofinite, Set.Finite.eventually_cofinite_notMem, tendsto_cofinite_cocompact_iff, RestrictedProduct.instContinuousMulCoeCofinite, tendsto_norm_comp_cofinite_atTop_of_isClosedEmbedding', MvPowerSeries.coeff_zero_iff, Summable.tendsto_cofinite_zero, cofinite.liminf_set_eq, Asymptotics.isBigO_cofinite_iff, EisensteinSeries.linear_isTheta_left, Function.Injective.tendsto_cofinite, cofinite_eq_bot_iff, RestrictedProduct.comp_mulSingle, RestrictedProduct.coe_mulSingle_apply, RestrictedProduct.continuous_dom_pi, RestrictedProduct.single_eq_of_ne, cofinite_eq_bot, OnePoint.continuous_iff_from_discrete, Set.Finite.compl_mem_cofinite, RestrictedProduct.mulSingle_one, EisensteinSeries.linear_isTheta_right_add, ModularGroup.tendsto_lcRow0, cocompact_le_cofinite, RestrictedProduct.instLocallyCompactSpaceCoeCofiniteOfAddSubgroupClassOfIsTopologicalAddGroupOfCompactSpaceSubtypeMem, coprodα΅’_cofinite, tendsto_cofinite_cocompact_of_discrete, RestrictedProduct.single_nsmul, RestrictedProduct.continuous_dom_prod_right, Set.Infinite.frequently_cofinite, RestrictedProduct.instContinuousAddCoeCofinite, RestrictedProduct.mulSingle_pow, NonarchimedeanAddGroup.summable_iff_tendsto_cofinite_zero, cofinite.blimsup_set_eq, RestrictedProduct.single_zsmul, RestrictedProduct.single_neg, RestrictedProduct.continuousSMul, RestrictedProduct.locallyCompactSpace_of_addGroup, FractionalIdeal.finite_factors', RestrictedProduct.weaklyLocallyCompactSpace_of_cofinite, EisensteinSeries.linear_isTheta_right, IsClosed.tendsto_coe_cofinite_iff, Nat.cofinite_eq_atTop, MvPowerSeries.WithPiTopology.variables_tendsto_zero, Ultrafilter.le_cofinite_or_eq_pure, cocompact_eq_cofinite, RestrictedProduct.nhds_zero_eq_map_structureMap, EisensteinSeries.isLittleO_const_left_of_properSpace_of_discreteTopology, Int.tendsto_coe_cofinite, coclosedCompact_le_cofinite, hyperfilter_le_cofinite, FractionalIdeal.finite_factors, NonarchimedeanGroup.multipliable_iff_tendsto_cofinite_one, RestrictedProduct.continuousVAdd, tendsto_norm_comp_cofinite_atTop_of_isClosedEmbedding, RestrictedProduct.isTopologicalGroup, NNReal.tendsto_cofinite_zero_of_summable, RestrictedProduct.single_eq_of_ne', EisensteinSeries.vec_add_const_isTheta, Function.update_eventuallyEq_cofinite, MvPowerSeries.HasEval.tendsto_zero, RestrictedProduct.mulSingle_div, RestrictedProduct.continuous_dom_prod_left, Set.Finite.cofinite_inf_principal_compl, RestrictedProduct.isTopologicalAddGroup, Set.infinite_iff_frequently_cofinite, RestrictedProduct.mulSingle_eq_of_ne, codiscrete_le_cofinite, Set.Finite.cofinite_inf_principal_diff, EisensteinSeries.linear_inv_isBigO_right, atTop_le_cofinite, RestrictedProduct.mulSingle_eq_one_iff

Theorems

NameKindAssumesProvesValidatesDepends On
atBot_le_cofinite πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
atBot
cofinite
β€”le_cofinite_iff_eventually_ne
eventually_ne_atBot
atTop_le_cofinite πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
atTop
cofinite
β€”le_cofinite_iff_eventually_ne
eventually_ne_atTop
cofinite_eq_bot πŸ“–mathematicalβ€”cofinite
Bot.bot
Filter
instBot
β€”cofinite_eq_bot_iff
cofinite_eq_bot_iff πŸ“–mathematicalβ€”cofinite
Bot.bot
Filter
instBot
Finite
β€”Set.compl_empty
cofinite_inf_principal_neBot_iff πŸ“–mathematicalβ€”NeBot
Filter
instInf
cofinite
principal
Set.Infinite
β€”frequently_mem_iff_neBot
frequently_cofinite_mem_iff_infinite
cofinite_neBot πŸ“–mathematicalβ€”NeBot
cofinite
β€”HasBasis.neBot_iff
hasBasis_cofinite
Set.Infinite.nonempty
Set.Finite.infinite_compl
comap_cofinite_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
cofinite
β€”le_cofinite_iff_eventually_ne
mem_comap
Set.Finite.compl_mem_cofinite
Set.finite_singleton
coprod_cofinite πŸ“–mathematicalβ€”coprod
cofinite
β€”coext
compl_compl
coprodα΅’_cofinite πŸ“–mathematicalβ€”coprodα΅’
cofinite
β€”coext
compl_compl
countable_compl_ker πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
cofinite
Set.Countable
Compl.compl
Set
Set.instCompl
ker
β€”exists_antitone_basis
HasBasis.ker
HasAntitoneBasis.toHasBasis
Set.iInter_true
Set.compl_iInter
Set.countable_iUnion
instCountableNat
Set.Finite.countable
HasAntitoneBasis.mem
disjoint_cofinite_left πŸ“–mathematicalβ€”Disjoint
Filter
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
cofinite
Set
instMembership
Set.Finite
β€”HasBasis.disjoint_iff_right
basis_sets
compl_compl
disjoint_cofinite_right πŸ“–mathematicalβ€”Disjoint
Filter
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
cofinite
Set
instMembership
Set.Finite
β€”disjoint_comm
disjoint_cofinite_left
eventually_cofinite πŸ“–mathematicalβ€”Eventually
cofinite
Set.Finite
setOf
β€”β€”
eventually_cofinite_ne πŸ“–mathematicalβ€”Eventually
cofinite
β€”Set.Finite.eventually_cofinite_notMem
Set.finite_singleton
frequently_cofinite_iff_infinite πŸ“–mathematicalβ€”Frequently
cofinite
Set.Infinite
setOf
β€”β€”
frequently_cofinite_mem_iff_infinite πŸ“–mathematicalβ€”Frequently
Set
Set.instMembership
cofinite
Set.Infinite
β€”frequently_cofinite_iff_infinite
hasBasis_cofinite πŸ“–mathematicalβ€”HasBasis
Set
cofinite
Set.Finite
Compl.compl
Set.instCompl
β€”Eq.subset
Set.instReflSubset
compl_compl
Set.Finite.subset
Set.compl_subset_comm
le_cofinite_iff_compl_singleton_mem πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
cofinite
Set
instMembership
Compl.compl
Set.instCompl
Set.instSingletonSet
β€”Set.Finite.compl_mem_cofinite
Set.finite_singleton
compl_compl
Set.biUnion_of_singleton
Set.compl_iUnionβ‚‚
biInter_mem
le_cofinite_iff_eventually_ne πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
cofinite
Eventually
β€”le_cofinite_iff_compl_singleton_mem
map_piMap_pi πŸ“–mathematicalβ€”map
Pi.map
pi
β€”le_antisymm
tendsto_piMap_pi
tendsto_map
HasBasis.ge_iff
HasBasis.map
hasBasis_pi
basis_sets
Set.univ_pi_piecewise_univ
Set.piMap_image_univ_pi
univ_pi_mem_pi
Set.piecewise_eq_of_mem
image_mem_map
Set.piecewise_eq_of_notMem
Set.image_univ
Set.preimage_range
mp_mem
Set.Finite.compl_mem_cofinite
univ_mem'
Function.Surjective.range_eq
map_piMap_pi_finite πŸ“–mathematicalβ€”map
Pi.map
pi
β€”map_piMap_pi
cofinite_eq_bot
mem_cofinite πŸ“–mathematicalβ€”Set
Filter
instMembership
cofinite
Set.Finite
Compl.compl
Set.instCompl
β€”β€”
univ_pi_mem_pi πŸ“–mathematicalSet
Filter
instMembership
pi
Set.pi
Set.univ
β€”mp_mem
pi_mem_pi
univ_mem'

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
cofinite_of_finite_preimage_singleton πŸ“–mathematicalFinite
Set.Elem
Set.preimage
Set
Set.instSingletonSet
Filter.Tendsto
Filter.cofinite
β€”Set.Finite.preimage'
countable_compl_preimage_ker πŸ“–mathematicalFilter.Tendsto
Filter.cofinite
Set.Countable
Compl.compl
Set
Set.instCompl
Set.preimage
Filter.ker
β€”Filter.ker_comap
Filter.countable_compl_ker
Filter.comap.isCountablyGenerated
le_comap
exists_forall_ge πŸ“–mathematicalFilter.Tendsto
Filter.cofinite
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLEβ€”exists_forall_le
exists_forall_le πŸ“–mathematicalFilter.Tendsto
Filter.cofinite
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLEβ€”exists_within_forall_le
Set.univ_nonempty
Set.mem_univ
exists_within_forall_ge πŸ“–mathematicalSet.Nonempty
Filter.Tendsto
Filter.cofinite
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Preorder.toLE
β€”exists_within_forall_le
exists_within_forall_le πŸ“–mathematicalSet.Nonempty
Filter.Tendsto
Filter.cofinite
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Preorder.toLE
β€”Filter.eventually_cofinite
Filter.tendsto_atTop
Set.exists_min_image
Set.Finite.inter_of_left
lt_or_ge
le_trans
LT.lt.le
Mathlib.Tactic.Push.not_and_eq

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_cofinite_notMem πŸ“–mathematicalβ€”Filter.Eventually
Finset
instMembership
Filter.cofinite
β€”Set.Finite.eventually_cofinite_notMem
finite_toSet

Function

Theorems

NameKindAssumesProvesValidatesDepends On
update_eventuallyEq πŸ“–mathematicalβ€”Filter.EventuallyEq
Filter.principal
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
update
β€”Filter.mp_mem
Filter.mem_principal_self
Filter.univ_mem'
update_of_ne
update_eventuallyEq_cofinite πŸ“–mathematicalβ€”Filter.EventuallyEq
Filter.cofinite
update
β€”Filter.EventuallyEq.filter_mono
update_eventuallyEq
compl_compl

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
comap_cofinite_eq πŸ“–mathematicalβ€”Filter.comap
Filter.cofinite
β€”LE.le.antisymm
Filter.comap_cofinite_le
Filter.Tendsto.le_comap
tendsto_cofinite
nat_tendsto_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Filter.atTop
Nat.instPreorder
β€”tendsto_cofinite
Nat.cofinite_eq_atTop
tendsto_cofinite πŸ“–mathematicalβ€”Filter.Tendsto
Filter.cofinite
β€”Set.Finite.preimage
injOn

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
le_map_cofinite πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.cofinite
Filter.map
β€”Set.Finite.of_preimage

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
cofinite_eq_atTop πŸ“–mathematicalβ€”Filter.cofinite
Filter.atTop
instPreorder
β€”le_antisymm
Filter.HasBasis.ge_iff
Filter.atTop_basis
SemilatticeSup.instIsDirectedOrder
Set.compl_Ici
Set.finite_lt_nat
Filter.atTop_le_cofinite
instNoTopOrderOfNoMaxOrder
instNoMaxOrder
eventually_pos πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
instPreorder
β€”Filter.eventually_of_mem
Filter.mem_atTop_sets
SemilatticeSup.instIsDirectedOrder
frequently_atTop_iff_infinite πŸ“–mathematicalβ€”Filter.Frequently
Filter.atTop
instPreorder
Set.Infinite
setOf
β€”cofinite_eq_atTop
Filter.frequently_cofinite_iff_infinite

Set

Theorems

NameKindAssumesProvesValidatesDepends On
infinite_iff_frequently_cofinite πŸ“–mathematicalβ€”Infinite
Filter.Frequently
Set
instMembership
Filter.cofinite
β€”Filter.frequently_cofinite_iff_infinite

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
cofinite_inf_principal_compl πŸ“–mathematicalβ€”Filter
Filter.instInf
Filter.cofinite
Filter.principal
Compl.compl
Set
Set.instCompl
β€”compl_compl
compl_mem_cofinite
cofinite_inf_principal_diff πŸ“–mathematicalβ€”Filter
Filter.instInf
Filter.cofinite
Filter.principal
Set
Set.instSDiff
β€”Set.diff_eq
Filter.inf_principal
inf_assoc
inf_right_comm
cofinite_inf_principal_compl
compl_mem_cofinite πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.cofinite
Compl.compl
Set.instCompl
β€”Filter.mem_cofinite
compl_compl
eventually_cofinite_notMem πŸ“–mathematicalβ€”Filter.Eventually
Set
Set.instMembership
Filter.cofinite
β€”compl_mem_cofinite

Set.Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
cofinite_inf_principal_neBot πŸ“–mathematicalSet.InfiniteFilter.NeBot
Filter
Filter.instInf
Filter.cofinite
Filter.principal
β€”Filter.cofinite_inf_principal_neBot_iff
frequently_cofinite πŸ“–mathematicalSet.InfiniteFilter.Frequently
Set
Set.instMembership
Filter.cofinite
β€”Filter.frequently_cofinite_mem_iff_infinite

---

← Back to Index