Documentation Verification Report

CountablyGenerated

πŸ“ Source: Mathlib/Order/Filter/CountablyGenerated.lean

Statistics

MetricCount
DefinitionsCountableFilterBasis, toFilterBasis, HasCountableBasis, IsCountableBasis, IsCountablyGenerated, inhabitedCountableFilterBasis
6
Theoremscountable, hasBasis_ge, mem, mem_iff, exists_antitone_subbasis, isCountablyGenerated, countable, isCountablyGenerated, toHasBasis, isCountablyGenerated, countable, toIsBasis, out, isCountablyGenerated, antitone_seq_of_seq, isCountablyGenerated, isCountablyGenerated, countable_biInf_eq_iInf_seq, countable_biInf_eq_iInf_seq', countable_biInf_principal_eq_seq_iInf, exists_antitone_basis, exists_antitone_seq, isCountablyGenerated, isCountablyGenerated_biInf_principal, isCountablyGenerated_bot, isCountablyGenerated_iff_exists_antitone_basis, isCountablyGenerated_of_seq, isCountablyGenerated_principal, isCountablyGenerated_pure, isCountablyGenerated_seq, isCountablyGenerated_top, isCountablyGenerated, isCountablyGenerated, isCountablyGenerated
34
Total40

Filter

Definitions

NameCategoryTheorems
CountableFilterBasis πŸ“–CompDataβ€”
HasCountableBasis πŸ“–CompData
4 mathmath: atBot_countable_basis, atTop_hasCountableBasis_of_archimedean, atTop_countable_basis, atBot_hasCountableBasis_of_archimedean
IsCountableBasis πŸ“–CompDataβ€”
IsCountablyGenerated πŸ“–CompData
44 mathmath: IsUniformGroup.uniformity_countably_generated, instIsCountablyGenerated_atBot, Rat.not_countably_generated_cocompact, Inf.isCountablyGenerated, isCountablyGenerated_of_seq, instIsCountablyGeneratedProdUniformity, map.isCountablyGenerated, OrderDual.instIsCountablyGeneratedAtBot, UniformOnFun.isCountablyGenerated_uniformity, IsUniformAddGroup.uniformity_countably_generated, OrderDual.instIsCountablyGeneratedAtTop, isCountablyGenerated_bot, SummationFilter.instIsCountablyGeneratedFinsetFilterUnconditionalOfCountable, isCountablyGenerated_seq, EMetric.instIsCountablyGeneratedUniformity, isCountablyGenerated_iff_exists_antitone_basis, prod.isCountablyGenerated, isCountablyGenerated_biInf_principal, instIsCountablyGeneratedAtTopProd, HasCountableBasis.isCountablyGenerated, Rat.not_countably_generated_nhds_infty_opc, Subsingleton.isCountablyGenerated, instIsCountablyGeneratedNhds, TopologicalSpace.pseudoMetrizableSpaceUniformity_countably_generated, instIsCountablyGenerated_atTop, instIsCountablyGeneratedProdSumUniformity, atTop.isCountablyGenerated, isCountablyGenerated_principal, isCountablyGenerated_pure, atBot_isCountablyGenerated_of_archimedean, isCountablyGenerated_top, ContinuousMap.instIsCountablyGeneratedProdUniformityOfWeaklyLocallyCompactSpaceOfSigmaCompactSpace, instIsCountablyGeneratedAtBotProd, TopologicalSpace.isCountablyGenerated_nhdsWithin, TopologicalSpace.PseudoMetrizableSpace.exists_countably_generated, Sup.isCountablyGenerated, instIsCountablyGeneratedProdElemUniformity, comap.isCountablyGenerated, atTop_isCountablyGenerated_of_archimedean, HasBasis.isCountablyGenerated, coprod.isCountablyGenerated, FirstCountableTopology.nhds_generated_countable, SummationFilter.instIsCountablyGeneratedFinsetFilterConditionalOfAtTopOfAtBot, atBot.isCountablyGenerated

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_seq_of_seq πŸ“–mathematicalβ€”Antitone
Set
Nat.instPreorder
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
iInf
Filter
instInfSet
principal
β€”Set.biInter_mono
Set.Iic_subset_Iic
Set.Subset.rfl
le_antisymm
le_iInf_iff
le_principal_iff
biInter_mem
Set.finite_le_nat
mem_iInf_of_mem
mem_principal_self
iInf_le_of_le
principal_mono
Set.iInterβ‚‚_subset
le_refl
countable_biInf_eq_iInf_seq πŸ“–mathematicalSet.NonemptyiInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Set
Set.instMembership
β€”Set.Countable.exists_eq_range
iInf_range
countable_biInf_eq_iInf_seq' πŸ“–mathematicalTop.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Set
Set.instMembership
β€”Set.eq_empty_or_nonempty
iInf_emptyset
iInf_top
countable_biInf_eq_iInf_seq
countable_biInf_principal_eq_seq_iInf πŸ“–mathematicalβ€”iInf
Filter
Set
instInfSet
Set.instMembership
principal
β€”countable_biInf_eq_iInf_seq'
principal_univ
exists_antitone_basis πŸ“–mathematicalβ€”HasAntitoneBasis
Nat.instPreorder
β€”HasBasis.exists_antitone_subbasis
basis_sets
exists_antitone_seq πŸ“–mathematicalβ€”Antitone
Set
Nat.instPreorder
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter
instMembership
Set.instHasSubset
β€”exists_antitone_basis
HasAntitoneBasis.antitone
HasBasis.mem_iff
HasAntitoneBasis.toHasBasis
isCountablyGenerated_biInf_principal πŸ“–mathematicalβ€”IsCountablyGenerated
iInf
Filter
Set
instInfSet
Set.instMembership
principal
β€”isCountablyGenerated_of_seq
countable_biInf_principal_eq_seq_iInf
isCountablyGenerated_bot πŸ“–mathematicalβ€”IsCountablyGenerated
Bot.bot
Filter
instBot
β€”isCountablyGenerated_principal
principal_empty
isCountablyGenerated_iff_exists_antitone_basis πŸ“–mathematicalβ€”IsCountablyGenerated
HasAntitoneBasis
Nat.instPreorder
β€”exists_antitone_basis
HasBasis.eq_iInf
HasAntitoneBasis.toHasBasis
isCountablyGenerated_seq
instCountableNat
isCountablyGenerated_of_seq πŸ“–mathematicaliInf
Filter
instInfSet
principal
IsCountablyGeneratedβ€”isCountablyGenerated_seq
instCountableNat
isCountablyGenerated_principal πŸ“–mathematicalβ€”IsCountablyGenerated
principal
β€”isCountablyGenerated_of_seq
iInf_const
isCountablyGenerated_pure πŸ“–mathematicalβ€”IsCountablyGenerated
Filter
instPure
β€”principal_singleton
isCountablyGenerated_principal
isCountablyGenerated_seq πŸ“–mathematicalβ€”IsCountablyGenerated
iInf
Filter
instInfSet
principal
β€”Set.countable_range
generate_eq_biInf
iInf_range
isCountablyGenerated_top πŸ“–mathematicalβ€”IsCountablyGenerated
Top.top
Filter
instTop
β€”isCountablyGenerated_principal
principal_univ

Filter.CountableFilterBasis

Definitions

NameCategoryTheorems
toFilterBasis πŸ“–CompOp
1 mathmath: countable

Theorems

NameKindAssumesProvesValidatesDepends On
countable πŸ“–mathematicalβ€”Set.Countable
Set
FilterBasis.sets
toFilterBasis
β€”β€”

Filter.HasAntitoneBasis

Theorems

NameKindAssumesProvesValidatesDepends On
hasBasis_ge πŸ“–mathematicalFilter.HasAntitoneBasisFilter.HasBasis
Preorder.toLE
β€”Filter.HasBasis.to_hasBasis
toHasBasis
antitone
exists_ge_ge
Set.Subset.rfl
mem πŸ“–mathematicalFilter.HasAntitoneBasisSet
Filter
Filter.instMembership
β€”Filter.HasBasis.mem_of_mem
toHasBasis
mem_iff πŸ“–mathematicalFilter.HasAntitoneBasisSet
Filter
Filter.instMembership
Set.instHasSubset
β€”Filter.HasBasis.mem_iff
toHasBasis

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
exists_antitone_subbasis πŸ“–mathematicalFilter.HasBasisFilter.HasAntitoneBasis
Nat.instPreorder
β€”Filter.generate_eq_biInf
Filter.countable_biInf_principal_eq_seq_iInf
iInf_le
Filter.mem_principal_self
Filter.inter_mem
mem_of_mem
antitone_nat_of_succ_le
HasSubset.Subset.trans
Set.instIsTransSubset
set_index_subset
Set.inter_subset_right
Set.inter_subset_left
Filter.HasAntitoneBasis.iInf_principal
SemilatticeSup.instIsDirectedOrder
le_antisymm
le_iInf
Filter.le_principal_iff
set_index_mem
mem_iff
Filter.HasAntitoneBasis.toHasBasis
isCountablyGenerated πŸ“–mathematicalFilter.HasBasisFilter.IsCountablyGeneratedβ€”Filter.HasCountableBasis.isCountablyGenerated
Set.to_countable
SetCoe.countable

Filter.HasCountableBasis

Theorems

NameKindAssumesProvesValidatesDepends On
countable πŸ“–mathematicalFilter.HasCountableBasisSet.Countable
setOf
β€”β€”
isCountablyGenerated πŸ“–mathematicalFilter.HasCountableBasisFilter.IsCountablyGeneratedβ€”Set.Countable.image
countable
Filter.HasBasis.eq_generate
toHasBasis
toHasBasis πŸ“–mathematicalFilter.HasCountableBasisFilter.HasBasisβ€”β€”

Filter.Inf

Theorems

NameKindAssumesProvesValidatesDepends On
isCountablyGenerated πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
Filter
Filter.instInf
β€”Filter.exists_antitone_basis
Filter.HasCountableBasis.isCountablyGenerated
Filter.HasBasis.inf
Filter.HasAntitoneBasis.toHasBasis
Set.to_countable
SetCoe.countable
instCountableProd
instCountableNat

Filter.IsCountableBasis

Theorems

NameKindAssumesProvesValidatesDepends On
countable πŸ“–mathematicalFilter.IsCountableBasisSet.Countable
setOf
β€”β€”
toIsBasis πŸ“–mathematicalFilter.IsCountableBasisFilter.IsBasisβ€”β€”

Filter.IsCountablyGenerated

Theorems

NameKindAssumesProvesValidatesDepends On
out πŸ“–mathematicalβ€”Set.Countable
Set
Filter.generate
β€”β€”

Filter.Nat

Definitions

NameCategoryTheorems
inhabitedCountableFilterBasis πŸ“–CompOpβ€”

Filter.Sup

Theorems

NameKindAssumesProvesValidatesDepends On
isCountablyGenerated πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
Filter
Filter.instSup
β€”Filter.exists_antitone_basis
Filter.HasCountableBasis.isCountablyGenerated
Filter.HasBasis.sup
Filter.HasAntitoneBasis.toHasBasis
Set.to_countable
SetCoe.countable
instCountableProd
instCountableNat

Filter.comap

Theorems

NameKindAssumesProvesValidatesDepends On
isCountablyGenerated πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
Filter.comap
β€”Filter.exists_antitone_basis
Filter.HasBasis.isCountablyGenerated
instCountableNat
Filter.HasAntitoneBasis.toHasBasis
Filter.HasAntitoneBasis.comap

Filter.coprod

Theorems

NameKindAssumesProvesValidatesDepends On
isCountablyGenerated πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
Filter.coprod
β€”Filter.Sup.isCountablyGenerated
Filter.comap.isCountablyGenerated

Filter.iInf

Theorems

NameKindAssumesProvesValidatesDepends On
isCountablyGenerated πŸ“–mathematicalFilter.IsCountablyGeneratediInf
Filter
Filter.instInfSet
β€”Function.Surjective.iInf_comp
PLift.down_surjective
Filter.HasCountableBasis.isCountablyGenerated
Filter.HasBasis.iInf
Filter.HasAntitoneBasis.toHasBasis
Set.Countable.mono
CanLift.prf
Set.instCanLiftFinsetCoeFinite
Set.countable_range
instCountableSigma
Finset.countable
instCountablePLift
instCountableForallOfFinite
Finite.of_fintype
instCountableNat
Filter.exists_antitone_basis

Filter.map

Theorems

NameKindAssumesProvesValidatesDepends On
isCountablyGenerated πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
Filter.map
β€”Filter.exists_antitone_basis
Filter.HasBasis.isCountablyGenerated
instCountableNat
Filter.HasAntitoneBasis.toHasBasis
Filter.HasAntitoneBasis.map

Filter.pi

Theorems

NameKindAssumesProvesValidatesDepends On
isCountablyGenerated πŸ“–mathematicalFilter.IsCountablyGeneratedFilter.piβ€”Filter.iInf.isCountablyGenerated
Filter.comap.isCountablyGenerated

Filter.prod

Theorems

NameKindAssumesProvesValidatesDepends On
isCountablyGenerated πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
SProd.sprod
Filter
Filter.instSProd
β€”Filter.Inf.isCountablyGenerated
Filter.comap.isCountablyGenerated

---

← Back to Index