Documentation Verification Report

ENNReal

📁 Source: Mathlib/Order/Filter/ENNReal.lean

Statistics

MetricCount
Definitions0
Theoremseventually_le_limsup, limsup_add_le, limsup_const_mul, limsup_const_mul_of_ne_top, limsup_eq_zero_iff, limsup_liminf_le_liminf_limsup, limsup_mul_le, ofReal_limsup, toReal_limsup, isBoundedUnder_ge_toReal, isBoundedUnder_le_toReal, isCoboundedUnder_ge_toReal, isCoboundedUnder_le_toReal, liminf_of_not_isCoboundedUnder, limsInf_of_not_isCobounded, limsSup_of_not_isBounded, limsup_of_not_isBoundedUnder, toReal_liminf, toReal_limsup, liminf_of_not_isBoundedUnder, liminf_of_not_isCoboundedUnder, limsInf_of_not_isBounded, limsInf_of_not_isCobounded, limsSup_of_not_isBounded, limsSup_of_not_isCobounded, limsup_of_not_isBoundedUnder, limsup_of_not_isCoboundedUnder
27
Total27

ENNReal

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_le_limsup 📖mathematicalFilter.Eventually
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
eventually_le_limsup
instOrderTopology
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
instMetrizableSpace
Filter.isBounded_le_of_top
limsup_add_le 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
sInf_le
Filter.Eventually.mp
eventually_le_limsup
Filter.Eventually.mono
add_le_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
limsup_const_mul 📖mathematicalFilter.limsup
ENNReal
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
limsup_const_mul_of_ne_top
Filter.Eventually.mono
MulZeroClass.mul_zero
Filter.limsup_congr
Filter.limsup_const_bot
bot_eq_zero'
instCanonicallyOrderedAdd
Filter.Frequently.mono
Filter.not_eventually
Filter.EventuallyEq.eq_1
Pi.zero_apply
eq_top_iff
Filter.le_limsup_of_frequently_le
Filter.isBounded_le_of_top
limsup_eq_zero_iff
top_mul'
limsup_const_mul_of_ne_top 📖mathematicalFilter.limsup
ENNReal
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
MulZeroClass.zero_mul
Filter.limsup_const_bot
mul_right_strictMono
mul_inv_cancel_left
OrderIso.limsup_apply
Filter.isBounded_le_of_top
Filter.isCobounded_le_of_bot
limsup_eq_zero_iff 📖mathematicalFilter.limsup
ENNReal
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
instZeroENNReal
Filter.EventuallyEq
Pi.instZero
limsup_eq_bot
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
instMetrizableSpace
instOrderTopology
limsup_liminf_le_liminf_limsup 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Filter.liminf
eventually_countable_forall
eventually_le_limsup
sInf_le
Filter.Eventually.mono
Filter.liminf_le_liminf
Filter.Eventually.of_forall
Filter.isBounded_ge_of_bot
Filter.isCobounded_ge_of_top
limsup_mul_le 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Filter.limsup_le_limsup
Filter.mp_mem
eventually_le_limsup
Filter.univ_mem'
mul_le_mul'
IsOrderedMonoid.toMulLeftMono
instIsOrderedMonoid
covariant_swap_mul_of_covariant_mul
le_rfl
Filter.isCobounded_le_of_bot
Filter.isBounded_le_of_top
limsup_const_mul
ofReal_limsup 📖mathematicalFilter.IsCoboundedUnder
Real
Real.instLE
Filter.IsBoundedUnder
ofReal
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
ENNReal
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
eq_of_forall_le_nnreal_iff
Filter.limsup_le_iff
Filter.isCobounded_le_of_bot
Filter.isBounded_le_of_top
Filter.mp_mem
Filter.univ_mem'
le_total
ofReal_of_nonpos
bot_eq_zero'
instCanonicallyOrderedAdd
LT.lt.bot_lt
LT.lt.trans_le'
toReal_lt_of_lt_ofReal
toReal_limsup 📖mathematicalFilter.Eventually
ENNReal
Top.top
instTopENNReal
Filter.IsBoundedUnder
Real
Real.instLE
toReal
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Real.instConditionallyCompleteLinearOrder
Filter.eq_or_neBot
Filter.map_bot
sInf_univ
bot_eq_zero'
instCanonicallyOrderedAdd
csInf_of_not_bddBelow
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Real.sInf_empty
Filter.IsCoboundedUnder.of_frequently_ge
eq_of_forall_ge_iff
lt_or_ge
LT.lt.not_ge
LT.lt.trans_le
toReal_nonneg
Filter.le_limsup_of_frequently_le
le_ofReal_iff_toReal_le
Filter.Eventually.exists
Filter.eventually_map
LE.le.trans
Filter.mp_mem
Filter.univ_mem'
Filter.limsup_le_iff
Filter.isCobounded_le_of_bot
Filter.isBounded_le_of_top
LT.lt.trans_le'
toReal_lt_of_lt_ofReal
ofReal_lt_coe_iff
lt_ofReal_iff_toReal_lt
ofReal_coe_nnreal

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
isBoundedUnder_ge_toReal 📖mathematicalFilter.IsBoundedUnder
Real
Real.instLE
toReal
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
isBoundedUnder_le_toReal 📖mathematicalFilter.IsBoundedUnder
Real
Real.instLE
toReal
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Filter.mp_mem
Filter.univ_mem'
isCoboundedUnder_ge_toReal 📖mathematicalFilter.IsCoboundedUnder
Real
Real.instLE
toReal
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
le_total
LE.le.trans
isCoboundedUnder_le_toReal 📖mathematicalFilter.IsCoboundedUnder
Real
Real.instLE
toReal
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
LE.le.trans'
Filter.Eventually.exists
liminf_of_not_isCoboundedUnder 📖mathematicalFilter.IsCoboundedUnder
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instZeroNNReal
limsInf_of_not_isCobounded
limsInf_of_not_isCobounded 📖mathematicalFilter.IsCobounded
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Filter.limsInf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instZeroNNReal
Filter.limsInf.eq_1
sSup_of_not_bddAbove
limsSup_of_not_isBounded 📖mathematicalFilter.IsBounded
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Filter.limsSup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instZeroNNReal
Filter.limsSup.eq_1
bot_eq_zero
sInf_empty
limsup_of_not_isBoundedUnder 📖mathematicalFilter.IsBoundedUnder
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
instZeroNNReal
limsSup_of_not_isBounded
toReal_liminf 📖mathematicalFilter.liminf
Real
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
toReal
NNReal
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
eq_of_forall_le_iff
Real.toNNReal_le_iff_le_coe
Filter.le_liminf_iff
Filter.isBounded_ge_of_bot
forall_swap
Filter.Eventually.of_forall
LT.lt.trans_le
le_or_gt
Real.liminf_of_not_isCoboundedUnder
liminf_of_not_isCoboundedUnder
toReal_limsup 📖mathematicalFilter.limsup
Real
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
toReal
NNReal
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
Filter.eq_or_neBot
Filter.map_bot
csInf_of_not_bddBelow
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Real.sInf_empty
csInf_univ
bot_eq_zero'
instCanonicallyOrderedAdd
Filter.isCobounded_le_of_bot
eq_of_forall_le_iff
Real.toNNReal_le_iff_le_coe
Filter.le_limsup_iff
forall_swap
Filter.Frequently.of_forall
LT.lt.trans_le
le_or_gt
Real.limsup_of_not_isBoundedUnder
limsup_of_not_isBoundedUnder

Real

Theorems

NameKindAssumesProvesValidatesDepends On
liminf_of_not_isBoundedUnder 📖mathematicalFilter.IsBoundedUnder
Real
instLE
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
instZero
limsInf_of_not_isBounded
liminf_of_not_isCoboundedUnder 📖mathematicalFilter.IsCoboundedUnder
Real
instLE
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
instZero
limsInf_of_not_isCobounded
limsInf_of_not_isBounded 📖mathematicalFilter.IsBounded
Real
instLE
Filter.limsInf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
instZero
Filter.limsInf.eq_1
sSup_empty
limsInf_of_not_isCobounded 📖mathematicalFilter.IsCobounded
Real
instLE
Filter.limsInf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
instZero
Filter.limsInf.eq_1
sSup_of_not_bddAbove
limsSup_of_not_isBounded 📖mathematicalFilter.IsBounded
Real
instLE
Filter.limsSup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
instZero
Filter.limsSup.eq_1
sInf_empty
limsSup_of_not_isCobounded 📖mathematicalFilter.IsCobounded
Real
instLE
Filter.limsSup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
instZero
Filter.limsSup.eq_1
sInf_of_not_bddBelow
limsup_of_not_isBoundedUnder 📖mathematicalFilter.IsBoundedUnder
Real
instLE
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
instZero
limsSup_of_not_isBounded
limsup_of_not_isCoboundedUnder 📖mathematicalFilter.IsCoboundedUnder
Real
instLE
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
instZero
limsSup_of_not_isCobounded

---

← Back to Index