Documentation Verification Report

IsBounded

📁 Source: Mathlib/Order/Filter/IsBounded.lean

Statistics

MetricCount
DefinitionsIsBounded, IsBounded, tacticIsBoundedDefault, IsBounded, IsBounded
5
Theoremsfrequently_ge_map_of_frequently_le, frequently_le_map_of_frequently_ge, isBoundedUnder_ge_comp, isBoundedUnder_ge_comp_iff, isBoundedUnder_le_comp, isBoundedUnder_le_comp_iff, isCoboundedUnder_ge_of_isCobounded, isCoboundedUnder_le_of_isCobounded, isBoundedUnder, isBoundedUnder_of_range, isBoundedUnder, isBoundedUnder_of_range, isBoundedUnder, isCobounded_flip, isCobounded_ge, isCobounded_le, mono, bddAbove_range, bddAbove_range_of_cofinite, bddBelow_range, bddBelow_range_of_cofinite, comp, eventually_ge, eventually_le, ge_of_finite, inf, isCoboundedUnder_flip, isCoboundedUnder_ge, isCoboundedUnder_le, le_of_finite, mono, mono_ge, mono_le, sup, frequently_ge, frequently_le, mk, mono, of_frequently_ge, of_frequently_le, frequently_ge, frequently_le, of_frequently_ge, of_frequently_le, isBoundedUnder_comp, isBoundedUnder_ge_atTop, isBoundedUnder_le_atBot, bddAbove_range_of_tendsto_atTop_atBot, bddBelow_range_of_tendsto_atTop_atTop, isBoundedUnder_const, isBoundedUnder_ge_add, isBoundedUnder_ge_inf, isBoundedUnder_ge_inv, isBoundedUnder_ge_neg, isBoundedUnder_ge_sum, isBoundedUnder_iff_eventually_bddAbove, isBoundedUnder_iff_eventually_bddBelow, isBoundedUnder_le_abs, isBoundedUnder_le_add, isBoundedUnder_le_inv, isBoundedUnder_le_mul_of_nonneg, isBoundedUnder_le_neg, isBoundedUnder_le_sum, isBoundedUnder_le_sup, isBoundedUnder_map_iff, isBoundedUnder_of, isBoundedUnder_of_eventually_ge, isBoundedUnder_of_eventually_le, isBoundedUnder_sum, isBounded_bot, isBounded_ge_atTop, isBounded_ge_of_bot, isBounded_iff, isBounded_le_atBot, isBounded_le_of_top, isBounded_principal, isBounded_sup, isBounded_top, isCoboundedUnder_ge_add, isCoboundedUnder_ge_mul_of_nonneg, isCoboundedUnder_ge_of_eventually_le, isCoboundedUnder_ge_of_le, isCoboundedUnder_le_add, isCoboundedUnder_le_of_eventually_le, isCoboundedUnder_le_of_le, isCobounded_bot, isCobounded_ge_of_top, isCobounded_le_of_bot, isCobounded_principal, isCobounded_top, not_isBoundedUnder_of_tendsto_atBot, not_isBoundedUnder_of_tendsto_atTop, frequently_ge_map_of_frequently_ge, frequently_le_map_of_frequently_le, isBoundedUnder_ge_comp, isBoundedUnder_ge_comp_iff, isBoundedUnder_le_comp, isBoundedUnder_le_comp_iff, isCoboundedUnder_ge_of_isCobounded, isCoboundedUnder_le_of_isCobounded, isBoundedUnder_ge_comp, isBoundedUnder_le_comp, isBoundedUnder_ge_finset_inf, isBoundedUnder_ge_finset_inf', isBoundedUnder_le_finset_sup, isBoundedUnder_le_finset_sup', isCoboundedUnder_ge_finset_inf', isCoboundedUnder_le_finset_sup', isCoboundedUnder_le_max
109
Total114

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
frequently_ge_map_of_frequently_le 📖mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Frequently
Preorder.toLE
Filter.mapMonotone.frequently_le_map_of_frequently_le
frequently_le_map_of_frequently_ge 📖mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Frequently
Preorder.toLE
Filter.mapMonotone.frequently_ge_map_of_frequently_ge
isBoundedUnder_ge_comp 📖Antitone
Filter.IsBoundedUnder
Preorder.toLE
Filter.IsBoundedUnder.comp
isBoundedUnder_ge_comp_iff 📖mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Filter.atTop
Filter.atBot
Filter.IsBoundedUnder
Preorder.toLE
Monotone.isBoundedUnder_le_comp_iff
OrderDual.noMaxOrder
dual_right
isBoundedUnder_le_comp 📖Antitone
Filter.IsBoundedUnder
Preorder.toLE
Filter.IsBoundedUnder.comp
isBoundedUnder_le_comp_iff 📖mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Filter.atBot
Filter.atTop
Filter.IsBoundedUnder
Preorder.toLE
Monotone.isBoundedUnder_ge_comp_iff
OrderDual.noMinOrder
dual_right
isCoboundedUnder_ge_of_isCobounded 📖mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.IsCobounded
Preorder.toLE
Filter.IsCoboundedUnderMonotone.isCoboundedUnder_le_of_isCobounded
isCoboundedUnder_le_of_isCobounded 📖mathematicalAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.IsCobounded
Preorder.toLE
Filter.IsCoboundedUnderMonotone.isCoboundedUnder_le_of_isCobounded
dual

BddAbove

Theorems

NameKindAssumesProvesValidatesDepends On
isBoundedUnder 📖mathematicalSet
Filter
Filter.instMembership
BddAbove
Preorder.toLE
Set.image
Filter.IsBoundedUnderFilter.isBoundedUnder_iff_eventually_bddAbove
isBoundedUnder_of_range 📖mathematicalBddAbove
Preorder.toLE
Set.range
Filter.IsBoundedUnderisBoundedUnder
Filter.univ_mem
Set.image_univ

BddBelow

Theorems

NameKindAssumesProvesValidatesDepends On
isBoundedUnder 📖mathematicalSet
Filter
Filter.instMembership
BddBelow
Preorder.toLE
Set.image
Filter.IsBoundedUnderFilter.isBoundedUnder_iff_eventually_bddBelow
isBoundedUnder_of_range 📖mathematicalBddBelow
Preorder.toLE
Set.range
Filter.IsBoundedUnderisBoundedUnder
Filter.univ_mem
Set.image_univ

Bornology

Definitions

NameCategoryTheorems
IsBounded 📖MathDef
116 mathmath: OrderDual.isBounded_preimage_toDual, ext_iff_isBounded, Metric.isBounded_ball, NormedSpace.isBounded_polar_of_mem_nhds_zero, MonoidHom.exists_nhds_isBounded, Metric.isCompact_iff_isClosed_bounded, Metric.isBounded_closedBall, Metric.isBounded_iff_subset_ball, IsBounded.all, Metric.isBounded_range_of_tendsto_cofinite, isBounded_iff_forall_norm_le', isBounded_biUnion, not_bounded_iff_exists_ne_zero_mem_asymptoticCone, NormedSpace.isBounded_iff_subset_smul_ball, NormedSpace.isVonNBounded_iff, BoxIntegral.Box.isBounded, Metric.isBounded_range_of_tendsto, MeasureTheory.SeparableSpace.exists_measurable_partition_diam_le, orderBornology_isBounded, isBounded_iff_forall_mem, isBounded_iUnion, Metric.isBounded_of_bddAbove_of_bddBelow, BddBelow.isBounded_inter, IsCompact.isBounded, TotallyBounded.isBounded, NormedSpace.isBounded_iff_subset_smul_closedBall, OrderDual.isBounded_preimage_ofDual, Metric.ediam_eq_top_iff_unbounded, isBounded_empty, isBounded_induced, Metric.isBounded_iff_eventually, Metric.isBounded_Ioo, BoundedContinuousFunction.isBounded_range, Metric.Snowflaking.isBounded_preimage_ofSnowflaking_iff, IsCobounded.of_compl, Metric.isBounded_iff_ediam_ne_top, isBounded_insert, Metric.Snowflaking.isBounded_image_ofSnowflaking_iff, BddAbove.isBounded_inter, isBounded_pi_of_nonempty, sUnion_bounded_univ, boundedSpace_subtype_iff, isBounded_iff_asymptoticCone_subset_singleton, BoundedSpace.bounded_univ, isBounded_def, isBounded_image_subtype_val, isBounded_biUnion_finset, isBounded_union, Metric.isBounded_iff, Metric.exists_isOpen_isBounded_image_of_isCompact_of_continuousOn, relativelyCompact.isBounded_iff, BddBelow.isBounded, Metric.exists_isBounded_image_of_tendsto, ZeroAtInftyContinuousMap.isBounded_image, isBounded_iff_of_bilipschitz, bounded_stdSimplex, forall_isBounded_image_eval_iff, ConvexBody.isBounded, spectrum.isBounded, isBounded_convexHull, BoxIntegral.Box.isBounded_Icc, Subalgebra.spectrum_isBounded_connectedComponentIn, isBounded_iff_isVonNBounded, isBounded_image_fst_and_snd, isBounded_iff_forall_norm_le, Set.Finite.isBounded, boundedSpace_val_set_iff, Metric.isBounded_of_compactSpace, Metric.isBounded_image_iff, isBounded_compl_iff, NormedSpace.unbounded_univ, isBounded_univ, isBounded_prod, isBounded_sUnion, isBounded_pi, Metric.isBounded_Ico, Metric.isBounded_closure_iff, IsCobounded.compl, isBounded_prod_self, CauchySeq.isBounded_range, Metric.isBounded_range_of_cauchy_map_cofinite, Metric.isBounded_sphere, Metric.isBounded_iff_nndist, BoundedContinuousFunction.isBounded_range_integral, ZSpan.fundamentalDomain_isBounded, Metric.compactSpace_iff_isBounded_univ, Metric.isBounded_range_of_tendsto_cofinite_uniformity, IsOrderBornology.isBounded_iff_bddBelow_bddAbove, isCobounded_compl_iff, isBounded_iff_bddBelow_bddAbove, Metric.exists_isOpen_isBounded_image_of_isCompact_of_forall_continuousAt, NumberField.mixedEmbedding.fundamentalCone.isBounded_normLeOne, NumberField.mixedEmbedding.convexBodySum_isBounded, Function.Periodic.isBounded_of_continuous, Metric.isBounded_Ioc, ZeroAtInftyContinuousMap.isBounded_range, AddMonoidHom.exists_nhds_isBounded, Metric.Snowflaking.isBounded_preimage_toSnowflaking_iff, Metric.exists_isOpen_isBounded_image_inter_of_isCompact_of_continuousOn, Metric.isBounded_of_abs_le, isBounded_prod_of_nonempty, Metric.isBounded_iff_exists_ge, Filter.HasBasis.disjoint_cobounded_iff, Metric.isBounded_iff_subset_closedBall, Metric.isBounded_Icc, inCompact.isBounded_iff, Metric.exists_isOpen_isBounded_image_inter_of_isCompact_of_forall_continuousWithinAt, comap_cobounded_le_iff, isBounded_ofBounded_iff, boundedSpace_induced_iff, Metric.isBounded_of_abs_lt, isBounded_singleton, BoundedContinuousFunction.isBounded_image, Metric.isBounded_range_iff, BddAbove.isBounded, Metric.Snowflaking.isBounded_image_toSnowflaking_iff

Filter

Definitions

NameCategoryTheorems
IsBounded 📖MathDef
12 mathmath: isBounded_iff, isBounded_bot, isBounded_le_atBot, isBounded_le_of_top, BoundedLENhdsClass.isBounded_le_nhds, isBounded_ge_nhds, isBounded_principal, BoundedGENhdsClass.isBounded_ge_nhds, isBounded_ge_atTop, isBounded_ge_of_bot, isBounded_top, isBounded_le_nhds
tacticIsBoundedDefault 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove_range_of_tendsto_atTop_atBot 📖mathematicalTendsto
atTop
Nat.instPreorder
atBot
BddAbove
Preorder.toLE
Set.range
IsBoundedUnder.bddAbove_range
Tendsto.isBoundedUnder_le_atBot
bddBelow_range_of_tendsto_atTop_atTop 📖mathematicalTendsto
atTop
Nat.instPreorder
BddBelow
Preorder.toLE
Set.range
IsBoundedUnder.bddBelow_range
Tendsto.isBoundedUnder_ge_atTop
isBoundedUnder_const 📖mathematicalIsBoundedUndereventually_map
Eventually.of_forall
refl
isBoundedUnder_ge_add 📖mathematicalIsBoundedUnder
Preorder.toLE
Pi.instAddmp_mem
univ_mem'
add_le_add
isBoundedUnder_ge_inf 📖mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMin
isBoundedUnder_le_sup
isBoundedUnder_ge_inv 📖mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
OrderIso.isBoundedUnder_le_comp
IsOrderedMonoid.toMulLeftMono
covariant_swap_mul_of_covariant_mul
isBoundedUnder_ge_neg 📖mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
OrderIso.isBoundedUnder_le_comp
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
isBoundedUnder_ge_sum 📖mathematicalIsBoundedUnder
Preorder.toLE
Finset.sum
Pi.addCommMonoid
isBoundedUnder_sum
isBoundedUnder_ge_add
le_rfl
isBoundedUnder_iff_eventually_bddAbove 📖mathematicalIsBoundedUnder
Preorder.toLE
BddAbove
Set.image
Eventually
Set
Set.instMembership
Eventually.mono
isBoundedUnder_iff_eventually_bddBelow 📖mathematicalIsBoundedUnder
Preorder.toLE
BddBelow
Set.image
Eventually
Set
Set.instMembership
isBoundedUnder_iff_eventually_bddAbove
isBoundedUnder_le_abs 📖mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddCommGroup.toAddGroup
isBoundedUnder_le_sup
isBoundedUnder_le_neg
isBoundedUnder_le_add 📖mathematicalIsBoundedUnder
Preorder.toLE
Pi.instAddmp_mem
univ_mem'
add_le_add
isBoundedUnder_le_inv 📖mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
OrderIso.isBoundedUnder_ge_comp
IsOrderedMonoid.toMulLeftMono
covariant_swap_mul_of_covariant_mul
isBoundedUnder_le_mul_of_nonneg 📖mathematicalFrequently
Preorder.toLE
IsBoundedUnder
EventuallyLE
Pi.instZero
Pi.instMulIsBoundedUnder.eventually_le
isBoundedUnder_of_eventually_le
mp_mem
univ_mem'
Frequently.exists
Frequently.and_eventually
LE.le.trans
mul_le_mul_of_nonneg_right
mul_le_mul_of_nonneg_left
isBoundedUnder_le_neg 📖mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
OrderIso.isBoundedUnder_ge_comp
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
isBoundedUnder_le_sum 📖mathematicalIsBoundedUnder
Preorder.toLE
Finset.sum
Pi.addCommMonoid
isBoundedUnder_sum
isBoundedUnder_le_add
le_rfl
isBoundedUnder_le_sup 📖mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMax
IsBoundedUnder.mono_le
Eventually.of_forall
le_sup_left
le_sup_right
IsBoundedUnder.sup
isBoundedUnder_map_iff 📖mathematicalIsBoundedUnder
map
isBoundedUnder_of 📖mathematicalIsBoundedUnderEventually.of_forall
isBoundedUnder_of_eventually_ge 📖mathematicalEventually
Preorder.toLE
IsBoundedUnder
isBoundedUnder_of_eventually_le 📖mathematicalEventually
Preorder.toLE
IsBoundedUnder
isBoundedUnder_sum 📖mathematicalIsBoundedUnder
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Pi.addCommMonoid
Finset.cons_induction
Finset.sum_empty
Finset.sum_cons
isBounded_bot 📖mathematicalIsBounded
Bot.bot
Filter
instBot
isBounded_ge_atTop 📖mathematicalIsBounded
Preorder.toLE
atTop
eventually_ge_atTop
isBounded_ge_of_bot 📖mathematicalIsBoundedEventually.of_forall
bot_le
isBounded_iff 📖mathematicalIsBounded
Set
Set.instMembership
sets
Set.instHasSubset
setOf
Set.Subset.refl
mem_of_superset
isBounded_le_atBot 📖mathematicalIsBounded
Preorder.toLE
atBot
eventually_le_atBot
isBounded_le_of_top 📖mathematicalIsBoundedEventually.of_forall
le_top
isBounded_principal 📖mathematicalIsBounded
principal
isBounded_sup 📖mathematicalIsBoundedFilter
instSup
directed_of
eventually_sup
Eventually.mono
trans
isBounded_top 📖mathematicalIsBounded
Top.top
Filter
instTop
isCoboundedUnder_ge_add 📖mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsCoboundedUnder
Pi.instAddIsBoundedUnder.eventually_le
IsCoboundedUnder.frequently_le
IsCoboundedUnder.of_frequently_le
Frequently.mono
Frequently.and_eventually
add_le_add
isCoboundedUnder_ge_mul_of_nonneg 📖mathematicalEventuallyLE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
IsBoundedUnder
IsCoboundedUnder
Pi.instMulIsBoundedUnder.eventually_le
IsCoboundedUnder.frequently_le
IsCoboundedUnder.of_frequently_le
Frequently.mono
Frequently.and_eventually
Eventually.and
LE.le.trans
mul_le_mul_of_nonneg_right
mul_le_mul_of_nonneg_left
isCoboundedUnder_ge_of_eventually_le 📖mathematicalEventually
Preorder.toLE
IsCoboundedUnderIsBoundedUnder.isCoboundedUnder_ge
isCoboundedUnder_ge_of_le 📖mathematicalPreorder.toLEIsCoboundedUnderisCoboundedUnder_ge_of_eventually_le
Eventually.of_forall
isCoboundedUnder_le_add 📖mathematicalIsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsCoboundedUnder
Pi.instAddIsBoundedUnder.eventually_ge
IsCoboundedUnder.frequently_ge
IsCoboundedUnder.of_frequently_ge
Frequently.mono
Frequently.and_eventually
add_le_add
isCoboundedUnder_le_of_eventually_le 📖mathematicalEventually
Preorder.toLE
IsCoboundedUnderIsBoundedUnder.isCoboundedUnder_le
isCoboundedUnder_le_of_le 📖mathematicalPreorder.toLEIsCoboundedUnderisCoboundedUnder_le_of_eventually_le
Eventually.of_forall
isCobounded_bot 📖mathematicalIsCobounded
Bot.bot
Filter
instBot
isCobounded_ge_of_top 📖mathematicalIsCoboundedle_top
isCobounded_le_of_bot 📖mathematicalIsCoboundedbot_le
isCobounded_principal 📖mathematicalIsCobounded
principal
isCobounded_top 📖mathematicalIsCobounded
Top.top
Filter
instTop
not_isBoundedUnder_of_tendsto_atBot 📖mathematicalTendsto
atBot
IsBoundedUnder
Preorder.toLE
not_isBoundedUnder_of_tendsto_atTop
OrderDual.noMaxOrder
not_isBoundedUnder_of_tendsto_atTop 📖mathematicalTendsto
atTop
IsBoundedUnder
Preorder.toLE
NoMaxOrder.exists_gt
tendsto_atTop
Set.eq_empty_of_subset_empty
not_le_of_gt
le_trans
Set.Nonempty.ne_empty
nonempty_of_mem
Eventually.and
eventually_map

Filter.IsBounded

Theorems

NameKindAssumesProvesValidatesDepends On
isBoundedUnder 📖mathematicalFilter.IsBoundedFilter.IsBoundedUnderFilter.Eventually.mono
isCobounded_flip 📖mathematicalFilter.IsBoundedFilter.IsCoboundedFilter.Eventually.exists
Filter.Eventually.and
trans
isCobounded_ge 📖mathematicalFilter.IsBounded
Preorder.toLE
Filter.IsCoboundedisCobounded_flip
instIsTransLe
isCobounded_le 📖mathematicalFilter.IsBounded
Preorder.toLE
Filter.IsCoboundedisCobounded_flip
instIsTransGe
mono 📖Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.IsBounded

Filter.IsBoundedUnder

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove_range 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
Filter.atTop
Nat.instPreorder
BddAbove
Set.range
bddAbove_range_of_cofinite
Nat.cofinite_eq_atTop
bddAbove_range_of_cofinite 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
Filter.cofinite
BddAbove
Set.range
Set.image_univ
Set.union_compl_self
Set.image_union
bddAbove_union
Set.forall_mem_image
Set.Finite.bddAbove
Set.Finite.image
bddBelow_range 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
Filter.atTop
Nat.instPreorder
BddBelow
Set.range
bddAbove_range
OrderDual.isDirected_le
bddBelow_range_of_cofinite 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
Filter.cofinite
BddBelow
Set.range
bddAbove_range_of_cofinite
OrderDual.isDirected_le
comp 📖Filter.IsBoundedUnderFilter.Eventually.mono
eventually_ge 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
Filter.Eventuallyeventually_le
eventually_le 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
Filter.Eventually
ge_of_finite 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
BddBelow.isBoundedUnder_of_range
Set.Finite.bddBelow
Set.toFinite
Finite.Set.finite_range
inf 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMinsup
isCoboundedUnder_flip 📖mathematicalFilter.IsBoundedUnderFilter.IsCoboundedUnderFilter.IsBounded.isCobounded_flip
Filter.map_neBot
isCoboundedUnder_ge 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
Filter.IsCoboundedUnderisCoboundedUnder_flip
instIsTransLe
isCoboundedUnder_le 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
Filter.IsCoboundedUnderisCoboundedUnder_flip
instIsTransGe
le_of_finite 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
BddAbove.isBoundedUnder_of_range
Set.Finite.bddAbove
Set.toFinite
Finite.Set.finite_range
mono 📖Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.IsBoundedUnder
Filter.IsBounded.mono
Filter.map_mono
mono_ge 📖Filter.IsBoundedUnder
Preorder.toLE
Filter.EventuallyLE
mono_le
mono_le 📖Filter.IsBoundedUnder
Preorder.toLE
Filter.EventuallyLE
Filter.Eventually.mp
Filter.eventually_map
Filter.Eventually.mono
le_trans
sup 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMaxFilter.mp_mem
Filter.univ_mem'
sup_le_sup

Filter.IsCobounded

Theorems

NameKindAssumesProvesValidatesDepends On
frequently_ge 📖mathematicalFilter.IsCobounded
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.FrequentlyisBot_or_exists_lt
SemilatticeInf.instIsCodirectedOrder
Filter.Frequently.of_forall
not_lt_of_ge
Filter.mp_mem
Filter.univ_mem'
LT.lt.le
not_le
frequently_le 📖mathematicalFilter.IsCobounded
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Frequentlyfrequently_ge
mk 📖mathematicalSet
Set.instMembership
Filter.IsCoboundedtrans
mono 📖Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.IsCobounded
of_frequently_ge 📖mathematicalFilter.Frequently
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.IsCoboundedisBot_or_exists_lt
SemilatticeInf.instIsCodirectedOrder
Filter.Frequently.exists
Filter.Frequently.and_eventually
LE.le.trans
LT.lt.le
of_frequently_le 📖mathematicalFilter.Frequently
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.IsCoboundedof_frequently_ge

Filter.IsCoboundedUnder

Theorems

NameKindAssumesProvesValidatesDepends On
frequently_ge 📖mathematicalFilter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.FrequentlyFilter.IsCobounded.frequently_ge
Filter.map_neBot
frequently_le 📖mathematicalFilter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.FrequentlyFilter.IsCobounded.frequently_le
Filter.map_neBot
of_frequently_ge 📖mathematicalFilter.Frequently
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.IsCoboundedUnderFilter.IsCobounded.of_frequently_ge
of_frequently_le 📖mathematicalFilter.Frequently
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.IsCoboundedUnderFilter.IsCobounded.of_frequently_le

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
isBoundedUnder_comp 📖Filter.Tendsto
Filter.IsBoundedUnder
Filter.isBoundedUnder_map_iff
Filter.IsBoundedUnder.mono
isBoundedUnder_ge_atTop 📖mathematicalFilter.Tendsto
Filter.atTop
Filter.IsBoundedUnder
Preorder.toLE
Filter.IsBounded.mono
Filter.isBounded_ge_atTop
isBoundedUnder_le_atBot 📖mathematicalFilter.Tendsto
Filter.atBot
Filter.IsBoundedUnder
Preorder.toLE
Filter.IsBounded.mono
Filter.isBounded_le_atBot

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
frequently_ge_map_of_frequently_ge 📖mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Frequently
Preorder.toLE
Filter.mapFilter.mp_mem
Filter.univ_mem'
lt_irrefl
lt_of_le_of_lt
not_lt
frequently_le_map_of_frequently_le 📖mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Frequently
Preorder.toLE
Filter.mapFilter.mp_mem
Filter.univ_mem'
lt_irrefl
lt_of_lt_of_le
not_lt
isBoundedUnder_ge_comp 📖Monotone
Filter.IsBoundedUnder
Preorder.toLE
Filter.IsBoundedUnder.comp
isBoundedUnder_ge_comp_iff 📖mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Filter.atBot
Filter.IsBoundedUnder
Preorder.toLE
isBoundedUnder_le_comp_iff
OrderDual.instNonempty
OrderDual.noMaxOrder
dual
isBoundedUnder_le_comp 📖Monotone
Filter.IsBoundedUnder
Preorder.toLE
Filter.IsBoundedUnder.comp
isBoundedUnder_le_comp_iff 📖mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
Filter.atTop
Filter.IsBoundedUnder
Preorder.toLE
Filter.eventually_atTop
SemilatticeSup.instIsDirectedOrder
Filter.Tendsto.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Filter.Eventually.mono
Filter.eventually_map
not_lt
LT.lt.not_ge
LT.lt.le
Filter.IsBounded.isBoundedUnder
isCoboundedUnder_ge_of_isCobounded 📖mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.IsCobounded
Preorder.toLE
Filter.IsCoboundedUnderisCoboundedUnder_le_of_isCobounded
dual
isCoboundedUnder_le_of_isCobounded 📖mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.IsCobounded
Preorder.toLE
Filter.IsCoboundedUnderFilter.IsCobounded.frequently_ge
Filter.IsCobounded.of_frequently_ge
frequently_ge_map_of_frequently_ge

OrderIso

Theorems

NameKindAssumesProvesValidatesDepends On
isBoundedUnder_ge_comp 📖mathematicalFilter.IsBoundedUnder
DFunLike.coe
OrderIso
instFunLikeOrderIso
isBoundedUnder_le_comp
isBoundedUnder_le_comp 📖mathematicalFilter.IsBoundedUnder
DFunLike.coe
OrderIso
instFunLikeOrderIso
Function.Surjective.exists
surjective
le_iff_le

RingHom

Definitions

NameCategoryTheorems
IsBounded 📖MathDef

Seminorm

Definitions

NameCategoryTheorems
IsBounded 📖MathDef
2 mathmath: isBounded_const, const_isBounded

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isBoundedUnder_ge_finset_inf 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.infisBoundedUnder_le_finset_sup
isBoundedUnder_ge_finset_inf' 📖mathematicalFinset.Nonempty
Filter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.inf'isBoundedUnder_le_finset_sup'
OrderDual.instNonempty
isBoundedUnder_le_finset_sup 📖mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.sup
Lattice.toSemilatticeSup
Filter.Eventually.mono
Filter.eventually_all_finset
Finset.sup_mono_fun
bot_nonempty
Function.sometimes_spec
isBoundedUnder_le_finset_sup' 📖mathematicalFinset.Nonempty
Filter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.sup'
Lattice.toSemilatticeSup
Filter.Eventually.mono
Filter.eventually_all_finset
le_trans
Finset.le_sup'
Function.sometimes_spec
isCoboundedUnder_ge_finset_inf' 📖mathematicalFinset.Nonempty
Finset
Finset.instMembership
Filter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.inf'isCoboundedUnder_le_finset_sup'
isCoboundedUnder_le_finset_sup' 📖mathematicalFinset.Nonempty
Finset
Finset.instMembership
Filter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.sup'
Lattice.toSemilatticeSup
Filter.eventually_map
Filter.Eventually.mono
isCoboundedUnder_le_max 📖mathematicalFilter.IsCoboundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Filter.eventually_map
Filter.Eventually.mono

---

← Back to Index