Documentation Verification Report

Ker

πŸ“ Source: Mathlib/Order/Filter/Ker.lean

Statistics

MetricCount
Definitionsgi_principal_ker
1
Theoremsker_bot, ker_comap, ker_def, ker_eq_univ, ker_iInf, ker_iSup, ker_inf, ker_mono, ker_pi, ker_principal, ker_prod, ker_pure, ker_sInf, ker_sSup, ker_sup, ker_surjective, ker_top, mem_ker, subset_ker
19
Total20

Filter

Definitions

NameCategoryTheorems
gi_principal_ker πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ker_bot πŸ“–mathematicalβ€”ker
Bot.bot
Filter
instBot
Set
Set.instEmptyCollection
β€”Set.sInter_eq_empty_iff
ker_comap πŸ“–mathematicalβ€”ker
comap
Set.preimage
β€”Set.ext
forall_swap
Set.Subset.rfl
ker_def πŸ“–mathematicalβ€”ker
Set.iInter
Set
Filter
instMembership
β€”Set.sInter_eq_biInter
ker_eq_univ πŸ“–mathematicalβ€”ker
Set.univ
Top.top
Filter
instTop
β€”GaloisConnection.u_eq_top
GaloisCoinsertion.gc
principal_univ
ker_iInf πŸ“–mathematicalβ€”ker
iInf
Filter
instInfSet
Set.iInter
β€”GaloisConnection.u_iInf
GaloisCoinsertion.gc
ker_iSup πŸ“–mathematicalβ€”ker
iSup
Filter
instSupSet
Set.iUnion
β€”subset_antisymm
Set.instAntisymmSubset
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
mem_iSup
mem_of_superset
Set.subset_iUnion
Monotone.le_map_iSup
ker_mono
ker_inf πŸ“–mathematicalβ€”ker
Filter
instInf
Set
Set.instInter
β€”GaloisConnection.u_inf
GaloisCoinsertion.gc
ker_mono πŸ“–mathematicalβ€”Monotone
Filter
Set
PartialOrder.toPreorder
instPartialOrder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ker
β€”GaloisConnection.monotone_u
GaloisCoinsertion.gc
ker_pi πŸ“–mathematicalβ€”ker
pi
Set.pi
Set.univ
β€”ker_iInf
ker_comap
Set.pi_def
Set.iInter_congr_Prop
Set.iInter_true
ker_principal πŸ“–mathematicalβ€”ker
principal
β€”GaloisCoinsertion.u_l_eq
ker_prod πŸ“–mathematicalβ€”ker
SProd.sprod
Filter
instSProd
Set
Set.instSProd
β€”ker_inf
ker_comap
ker_pure πŸ“–mathematicalβ€”ker
Filter
instPure
Set
Set.instSingletonSet
β€”principal_singleton
ker_principal
ker_sInf πŸ“–mathematicalβ€”ker
InfSet.sInf
Filter
instInfSet
Set.iInter
Set
Set.instMembership
β€”GaloisConnection.u_sInf
GaloisCoinsertion.gc
ker_sSup πŸ“–mathematicalβ€”ker
SupSet.sSup
Filter
instSupSet
Set.iUnion
Set
Set.instMembership
β€”sSup_eq_iSup
ker_iSup
ker_sup πŸ“–mathematicalβ€”ker
Filter
instSup
Set
Set.instUnion
β€”sSup_pair
ker_sSup
Set.biUnion_pair
ker_surjective πŸ“–mathematicalβ€”Filter
Set
ker
β€”GaloisCoinsertion.u_surjective
ker_top πŸ“–mathematicalβ€”ker
Top.top
Filter
instTop
Set.univ
β€”GaloisConnection.u_top
GaloisCoinsertion.gc
mem_ker πŸ“–mathematicalβ€”Set
Set.instMembership
ker
β€”Set.mem_sInter
subset_ker πŸ“–mathematicalβ€”Set
Set.instHasSubset
ker
β€”Set.subset_sInter_iff

---

← Back to Index