π Source: Mathlib/Order/Filter/Lift.lean
lift'
mem_lift_iff
comap_eq_lift'
comap_lift'_eq
comap_lift'_eq2
comap_lift_eq
comap_lift_eq2
eventually_lift'_iff
le_lift
le_lift'
lift'_bot
lift'_cong
lift'_iInf
lift'_iInf_of_map_univ
lift'_id
lift'_inf
lift'_inf_le
lift'_inf_principal_eq
lift'_le
lift'_lift'_assoc
lift'_lift_assoc
lift'_map_le
lift'_mono
lift'_mono'
lift'_neBot_iff
lift'_principal
lift'_pure
lift'_top
lift_assoc
lift_comm
lift_const
lift_iInf
lift_iInf_le
lift_iInf_of_directed
lift_iInf_of_map_univ
lift_inf
lift_le
lift_lift'_assoc
lift_lift'_same_eq_lift'
lift_lift'_same_le_lift'
lift_lift_same_eq_lift
lift_lift_same_le_lift
lift_map_le
lift_mono
lift_mono'
lift_neBot_iff
lift_principal
lift_principal2
lift_top
map_lift'_eq
map_lift'_eq2
map_lift_eq
map_lift_eq2
mem_lift
mem_lift'
mem_lift'_sets
mem_lift_sets
mem_prod_same_iff
monotone_lift
monotone_lift'
principal_le_lift'
prod_def
prod_lift'_lift'
prod_lift_lift
prod_same_eq
sInter_lift'_sets
sInter_lift_sets
tendsto_lift
tendsto_lift'
tendsto_prod_self_iff
comap
Set.preimage
ext
Set.monotone_preimage
Set
comap_principal
Monotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Monotone.comp
monotone_principal
lift
Filter
comap_iInf
instPartialOrder
le_antisymm
le_iInfβ
iInfβ_le
Set.Subset.rfl
iInfβ_le_of_le
Eventually
instMembership
Preorder.toLE
le_iInfβ_iff
le_principal_iff
Bot.bot
instBot
principal
Set.instEmptyCollection
principal_empty
le_of_eq
Set.instInter
iInf
instInfSet
inf_principal
Set.univ
principal_univ
instInf
inf_eq_iInf
iInf_congr
le_inf
inf_le_left
le_rfl
inf_le_right
iInf_congr_Prop
iInf_subtype'
map
Set.image
Pi.hasLe
Set.instLE
principal_mono
Set.instHasSubset
iInfβ_mono
NeBot
Set.Nonempty
instPure
Set.instSingletonSet
principal_singleton
Top.top
instTop
iInf_le_of_le
iInf_le
le_iInf
iInf_const
LE.le.antisymm
iInf_sets_induct
univ_mem
Monotone.of_map_inf
Directed
mem_iInf_of_directed
mem_iInf_of_mem
isEmpty_or_nonempty
iInf_of_empty
iInf_inf_eq
inter_mem
Set.inter_subset_left
Set.inter_subset_right
image_mem_map
iInf_mono
iInf_mono'
mem_principal_self
iInf_iInf_eq_left
map_principal
map_mono
Set.image_preimage_subset
HasBasis.mem_lift_iff
basis_sets
SProd.sprod
instSProd
Set.instSProd
mem_prod_self_iff
Pi.preorder
HasBasis.eq_biInf
HasBasis.prod
iInf_and
iInf_prod
iInf_comm
prod_principal_principal
HasBasis.prod_self
Set.sInter
setOf
Set.iInter
Set.iInterβ_congr
csInf_Ici
Set.sInter_eq_biInter
Set.iInter_exists
Set.iInter_and
Set.iInter_comm
Set.iInter_congr_Prop
Tendsto
Set.instMembership
Filter.HasBasis
Filter.lift'
Filter.hasBasis_principal
Filter.monotone_principal
Filter.instPartialOrder
Filter.instMembership
Filter.lift
Filter.mem_biInf_of_directed
Filter.inter_mem
Filter.univ_sets
mem_iff
exists_iff
---
β Back to Index