Documentation Verification Report

Lift

πŸ“ Source: Mathlib/Order/Filter/Lift.lean

Statistics

MetricCount
Definitions0
Theoremslift', mem_lift_iff, comap_eq_lift', comap_lift'_eq, comap_lift'_eq2, comap_lift_eq, comap_lift_eq2, eventually_lift'_iff, le_lift, le_lift', lift'_bot, lift'_cong, lift'_iInf, lift'_iInf_of_map_univ, lift'_id, lift'_inf, lift'_inf_le, lift'_inf_principal_eq, lift'_le, lift'_lift'_assoc, lift'_lift_assoc, lift'_map_le, lift'_mono, lift'_mono', lift'_neBot_iff, lift'_principal, lift'_pure, lift'_top, lift_assoc, lift_comm, lift_const, lift_iInf, lift_iInf_le, lift_iInf_of_directed, lift_iInf_of_map_univ, lift_inf, lift_le, lift_lift'_assoc, lift_lift'_same_eq_lift', lift_lift'_same_le_lift', lift_lift_same_eq_lift, lift_lift_same_le_lift, lift_map_le, lift_mono, lift_mono', lift_neBot_iff, lift_principal, lift_principal2, lift_top, map_lift'_eq, map_lift'_eq2, map_lift_eq, map_lift_eq2, mem_lift, mem_lift', mem_lift'_sets, mem_lift_sets, mem_prod_same_iff, monotone_lift, monotone_lift', principal_le_lift', prod_def, prod_lift'_lift', prod_lift_lift, prod_same_eq, sInter_lift'_sets, sInter_lift_sets, tendsto_lift, tendsto_lift', tendsto_prod_self_iff
70
Total70

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
comap_eq_lift' πŸ“–mathematicalβ€”comap
lift'
Set.preimage
β€”ext
mem_lift'_sets
Set.monotone_preimage
comap_lift'_eq πŸ“–mathematicalβ€”comap
lift'
Set
Set.preimage
β€”comap_lift_eq
comap_principal
comap_lift'_eq2 πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lift'
comap
Set.preimage
β€”comap_lift_eq2
Monotone.comp
monotone_principal
comap_lift_eq πŸ“–mathematicalβ€”comap
lift
Set
Filter
β€”comap_iInf
comap_lift_eq2 πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
lift
comap
Set.preimage
β€”le_antisymm
le_iInfβ‚‚
iInfβ‚‚_le
Set.Subset.rfl
iInfβ‚‚_le_of_le
eventually_lift'_iff πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Eventually
lift'
Filter
instMembership
β€”mem_lift'_sets
le_lift πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift
β€”le_iInfβ‚‚_iff
le_lift' πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift'
Set
instMembership
β€”le_lift
le_principal_iff
lift'_bot πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lift'
Bot.bot
Filter
instBot
principal
Set.instEmptyCollection
β€”principal_empty
lift'_principal
lift'_cong πŸ“–mathematicalβ€”lift'β€”le_antisymm
lift'_mono'
le_of_eq
lift'_iInf πŸ“–mathematicalSet
Set.instInter
lift'
iInf
Filter
instInfSet
β€”lift_iInf
inf_principal
lift'_iInf_of_map_univ πŸ“–mathematicalSet
Set.instInter
Set.univ
lift'
iInf
Filter
instInfSet
β€”lift_iInf_of_map_univ
inf_principal
principal_univ
lift'_id πŸ“–mathematicalβ€”lift'
Set
β€”lift_principal2
lift'_inf πŸ“–mathematicalSet
Set.instInter
lift'
Filter
instInf
β€”inf_eq_iInf
lift'_iInf
iInf_congr
lift'_inf_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift'
instInf
β€”le_inf
lift'_mono
inf_le_left
le_rfl
inf_le_right
lift'_inf_principal_eq πŸ“–mathematicalβ€”Filter
instInf
lift'
principal
Set
Set.instInter
β€”iInf_congr_Prop
iInf_subtype'
lift'_le πŸ“–mathematicalSet
Filter
instMembership
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
principal
lift'β€”lift_le
lift'_lift'_assoc πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lift'β€”lift_lift'_assoc
Monotone.comp
monotone_principal
lift'_lift_assoc πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
lift'
lift
β€”lift_assoc
lift'_map_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift'
map
Set
Set.image
β€”lift_map_le
lift'_mono πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Pi.hasLe
Set
Set.instLE
lift'β€”lift_mono
principal_mono
lift'_mono' πŸ“–mathematicalSet
Set.instHasSubset
Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift'
β€”iInfβ‚‚_mono
principal_mono
lift'_neBot_iff πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
NeBot
lift'
Set.Nonempty
β€”lift_neBot_iff
Monotone.comp
monotone_principal
lift'_principal πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lift'
principal
β€”lift_principal
Monotone.comp
monotone_principal
lift'_pure πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lift'
Filter
instPure
principal
Set.instSingletonSet
β€”principal_singleton
lift'_principal
lift'_top πŸ“–mathematicalβ€”lift'
Top.top
Filter
instTop
principal
Set.univ
β€”lift_top
lift_assoc πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
liftβ€”le_antisymm
le_iInfβ‚‚
iInf_le_of_le
iInf_le
mem_lift_sets
lift_comm πŸ“–mathematicalβ€”liftβ€”le_antisymm
le_iInf
iInf_le_of_le
iInf_le
lift_const πŸ“–mathematicalβ€”liftβ€”iInf_subtype'
iInf_const
lift_iInf πŸ“–mathematicalSet
Set.instInter
Filter
instInf
lift
iInf
instInfSet
β€”LE.le.antisymm
lift_iInf_le
iInf_sets_induct
iInfβ‚‚_le_of_le
iInf_le
univ_mem
le_inf
mem_lift_sets
Monotone.of_map_inf
lift_iInf_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift
iInf
instInfSet
β€”le_iInf
lift_mono
iInf_le
le_rfl
lift_iInf_of_directed πŸ“–mathematicalDirected
Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Monotone
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lift
iInf
instInfSet
β€”LE.le.antisymm
lift_iInf_le
mem_lift_sets
mem_iInf_of_directed
mem_iInf_of_mem
mem_lift
lift_iInf_of_map_univ πŸ“–mathematicalSet
Set.instInter
Filter
instInf
Set.univ
Top.top
instTop
lift
iInf
instInfSet
β€”isEmpty_or_nonempty
iInf_of_empty
lift_top
lift_iInf
lift_inf πŸ“–mathematicalβ€”lift
Filter
instInf
β€”iInf_congr_Prop
iInf_inf_eq
lift_le πŸ“–mathematicalSet
Filter
instMembership
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
liftβ€”iInfβ‚‚_le_of_le
lift_lift'_assoc πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter
instPartialOrder
lift
lift'
β€”lift_assoc
Monotone.comp
monotone_principal
lift_principal
lift_lift'_same_eq_lift' πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lift
lift'
β€”lift_lift_same_eq_lift
Monotone.comp
monotone_principal
lift_lift'_same_le_lift' πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift
lift'
β€”lift_lift_same_le_lift
lift_lift_same_eq_lift πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
liftβ€”LE.le.antisymm
lift_lift_same_le_lift
le_lift
lift_le
inter_mem
Set.inter_subset_left
Set.inter_subset_right
lift_lift_same_le_lift πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift
β€”le_lift
lift_le
le_rfl
lift_map_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
lift
map
Set
Set.image
β€”le_lift
lift_le
image_mem_map
le_rfl
lift_mono πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Pi.hasLe
Set
liftβ€”iInf_mono
iInf_mono'
lift_mono' πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
liftβ€”iInfβ‚‚_mono
lift_neBot_iff πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
NeBot
lift
β€”mem_lift_sets
lift_principal πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
lift
principal
β€”LE.le.antisymm
lift_le
mem_principal_self
le_rfl
le_lift
lift_principal2 πŸ“–mathematicalβ€”lift
principal
β€”le_antisymm
mem_lift
mem_principal_self
le_iInf
lift_top πŸ“–mathematicalβ€”lift
Top.top
Filter
instTop
Set.univ
β€”iInf_congr_Prop
iInf_iInf_eq_left
map_lift'_eq πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
map
lift'
Set.image
β€”map_lift_eq
Monotone.comp
monotone_principal
map_principal
map_lift'_eq2 πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lift'
map
Set.image
β€”map_lift_eq2
Monotone.comp
monotone_principal
map_lift_eq πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
map
lift
β€”Monotone.comp
map_mono
ext
mem_lift_sets
map_lift_eq2 πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
lift
map
Set.image
β€”LE.le.antisymm
lift_map_le
le_lift
lift_le
Set.image_preimage_subset
mem_lift πŸ“–mathematicalSet
Filter
instMembership
liftβ€”le_principal_iff
iInf_le_of_le
mem_lift' πŸ“–mathematicalSet
Filter
instMembership
lift'β€”le_principal_iff
iInf_le_of_le
le_rfl
mem_lift'_sets πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter
instMembership
lift'
Set.instHasSubset
β€”mem_lift_sets
Monotone.comp
monotone_principal
mem_lift_sets πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
instMembership
lift
β€”HasBasis.mem_lift_iff
basis_sets
mem_prod_same_iff πŸ“–mathematicalβ€”Set
Filter
instMembership
SProd.sprod
instSProd
Set.instHasSubset
Set.instSProd
β€”mem_prod_self_iff
monotone_lift πŸ“–mathematicalMonotone
Filter
PartialOrder.toPreorder
instPartialOrder
Pi.preorder
Set
liftβ€”lift_mono
monotone_lift' πŸ“–mathematicalMonotone
Filter
PartialOrder.toPreorder
instPartialOrder
Pi.preorder
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
lift'β€”lift'_mono
principal_le_lift' πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
principal
lift'
Set
Set.instHasSubset
β€”le_lift'
prod_def πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
lift
lift'
Set
Set.instSProd
β€”HasBasis.eq_biInf
HasBasis.prod
basis_sets
iInf_and
iInf_prod
iInf_congr_Prop
iInf_congr
iInf_comm
prod_lift'_lift' πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
SProd.sprod
Filter
instSProd
lift'
lift
Set.instSProd
β€”prod_lift_lift
Monotone.comp
monotone_principal
prod_principal_principal
prod_lift_lift πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SProd.sprod
instSProd
lift
β€”prod_def
lift_assoc
lift_comm
lift'_lift_assoc
prod_same_eq πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
lift'
Set
Set.instSProd
β€”HasBasis.eq_biInf
HasBasis.prod_self
basis_sets
sInter_lift'_sets πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.sInter
setOf
Filter
instMembership
lift'
Set.iInter
β€”sInter_lift_sets
Monotone.comp
monotone_principal
Set.iInterβ‚‚_congr
csInf_Ici
sInter_lift_sets πŸ“–mathematicalMonotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
Set.sInter
setOf
instMembership
lift
Set.iInter
β€”mem_lift_sets
Set.sInter_eq_biInter
Set.iInter_exists
Set.iInter_and
Set.iInter_comm
Set.iInter_congr_Prop
tendsto_lift πŸ“–mathematicalβ€”Tendsto
lift
β€”β€”
tendsto_lift' πŸ“–mathematicalβ€”Tendsto
lift'
Eventually
Set
Set.instMembership
β€”β€”
tendsto_prod_self_iff πŸ“–mathematicalβ€”Tendsto
SProd.sprod
Filter
instSProd
Set
instMembership
Set.instMembership
β€”β€”

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
lift' πŸ“–mathematicalFilter.HasBasis
Monotone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.lift'β€”mem_lift_iff
Filter.hasBasis_principal
Monotone.comp
Filter.monotone_principal
mem_lift_iff πŸ“–mathematicalFilter.HasBasis
Monotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.instPartialOrder
Filter.instMembership
Filter.lift
Set.instHasSubset
β€”Filter.mem_biInf_of_directed
Filter.inter_mem
Set.inter_subset_left
Set.inter_subset_right
Filter.univ_sets
mem_iff
exists_iff

---

← Back to Index