Documentation Verification Report

NAry

šŸ“ Source: Mathlib/Order/Filter/NAry.lean

Statistics

MetricCount
Definitionsmapā‚‚
1
Theoremsmapā‚‚, mapā‚‚, of_mapā‚‚_left, of_mapā‚‚_right, image2_mem_mapā‚‚, le_mapā‚‚_iff, map_mapā‚‚, map_mapā‚‚_antidistrib, map_mapā‚‚_antidistrib_left, map_mapā‚‚_antidistrib_right, map_mapā‚‚_distrib, map_mapā‚‚_distrib_left, map_mapā‚‚_distrib_right, map_mapā‚‚_right_anticomm, map_mapā‚‚_right_comm, map_prod_eq_mapā‚‚, map_prod_eq_mapā‚‚', map_uncurry_prod, neBot, mapā‚‚_assoc, mapā‚‚_bot_left, mapā‚‚_bot_right, mapā‚‚_comm, mapā‚‚_curry, mapā‚‚_distrib_le_left, mapā‚‚_distrib_le_right, mapā‚‚_eq_bot_iff, mapā‚‚_inf_subset_left, mapā‚‚_inf_subset_right, mapā‚‚_left, mapā‚‚_left_comm, mapā‚‚_left_identity, mapā‚‚_map_left, mapā‚‚_map_left_anticomm, mapā‚‚_map_left_comm, mapā‚‚_map_right, mapā‚‚_mk_eq_prod, mapā‚‚_mono, mapā‚‚_mono_left, mapā‚‚_mono_right, mapā‚‚_neBot_iff, mapā‚‚_pure, mapā‚‚_pure_left, mapā‚‚_pure_right, mapā‚‚_right, mapā‚‚_right_comm, mapā‚‚_right_identity, mapā‚‚_sup_left, mapā‚‚_sup_right, mapā‚‚_swap, mem_mapā‚‚_iff
51
Total52

Filter

Definitions

NameCategoryTheorems
mapā‚‚ šŸ“–CompOp
56 mathmath: map_mapā‚‚_right_comm, mapā‚‚_bot_right, image2_mem_mapā‚‚, map_mapā‚‚_antidistrib_left, mapā‚‚_div, mapā‚‚_vsub, mapā‚‚_bot_left, mapā‚‚_neBot_iff, mapā‚‚_smul, mapā‚‚_map_right, map_mapā‚‚_distrib_left, mapā‚‚_map_left_anticomm, mapā‚‚_sup_right, mapā‚‚_distrib_le_left, mapā‚‚_distrib_le_right, map_prod_eq_mapā‚‚', mapā‚‚_right_identity, mapā‚‚_mono_right, mapā‚‚_map_left, mem_mapā‚‚_iff, mapā‚‚_comm, mapā‚‚_mk_eq_prod, mapā‚‚_vadd, le_mapā‚‚_iff, mapā‚‚_left_identity, mapā‚‚_pure_left, NeBot.mapā‚‚, mapā‚‚_left, map_mapā‚‚_distrib, mapā‚‚_right, mapā‚‚_assoc, HasBasis.mapā‚‚, mapā‚‚_mul, map_prod_eq_mapā‚‚, mapā‚‚_map_left_comm, mapā‚‚_mono, mapā‚‚.neBot, map_mapā‚‚_right_anticomm, mapā‚‚_sub, map_uncurry_prod, mapā‚‚_eq_bot_iff, mapā‚‚_pure, mapā‚‚_curry, mapā‚‚_swap, mapā‚‚_sup_left, mapā‚‚_add, map_mapā‚‚_antidistrib_right, mapā‚‚_pure_right, map_mapā‚‚_distrib_right, mapā‚‚_left_comm, mapā‚‚_mono_left, map_mapā‚‚_antidistrib, map_mapā‚‚, mapā‚‚_inf_subset_right, mapā‚‚_inf_subset_left, mapā‚‚_right_comm

Theorems

NameKindAssumesProvesValidatesDepends On
image2_mem_mapā‚‚ šŸ“–mathematicalSet
Filter
instMembership
mapā‚‚
Set.image2
—Set.Subset.rfl
le_mapā‚‚_iff šŸ“–mathematical—Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapā‚‚
Set
instMembership
Set.image2
—image2_mem_mapā‚‚
mem_of_superset
map_mapā‚‚ šŸ“–mathematical—map
mapā‚‚
—map_prod_eq_mapā‚‚
map_map
map_mapā‚‚_antidistrib šŸ“–mathematical—map
mapā‚‚
—mapā‚‚_swap
map_mapā‚‚_distrib
map_mapā‚‚_antidistrib_left šŸ“–mathematical—map
mapā‚‚
—map_mapā‚‚_antidistrib
map_mapā‚‚_antidistrib_right šŸ“–mathematical—map
mapā‚‚
—map_mapā‚‚_antidistrib
map_mapā‚‚_distrib šŸ“–mathematical—map
mapā‚‚
—map_mapā‚‚
mapā‚‚_map_left
mapā‚‚_map_right
map_mapā‚‚_distrib_left šŸ“–mathematical—map
mapā‚‚
—map_mapā‚‚_distrib
map_mapā‚‚_distrib_right šŸ“–mathematical—map
mapā‚‚
—map_mapā‚‚_distrib
map_mapā‚‚_right_anticomm šŸ“–mathematical—mapā‚‚
map
—map_mapā‚‚_antidistrib_right
map_mapā‚‚_right_comm šŸ“–mathematical—mapā‚‚
map
—map_mapā‚‚_distrib_right
map_prod_eq_mapā‚‚ šŸ“–mathematical—map
SProd.sprod
Filter
instSProd
mapā‚‚
—mapā‚‚.eq_1
copy_eq
Function.uncurry_def
map_prod_eq_mapā‚‚' šŸ“–mathematical—map
SProd.sprod
Filter
instSProd
mapā‚‚
—map_prod_eq_mapā‚‚
map_uncurry_prod šŸ“–mathematical—map
SProd.sprod
Filter
instSProd
mapā‚‚
—mapā‚‚_curry
mapā‚‚_assoc šŸ“–mathematical—map₂—map_prod_eq_mapā‚‚
mapā‚‚_map_left
mapā‚‚_map_right
prod_assoc
map_map
mapā‚‚_bot_left šŸ“–mathematical—mapā‚‚
Bot.bot
Filter
instBot
—mapā‚‚_eq_bot_iff
mapā‚‚_bot_right šŸ“–mathematical—mapā‚‚
Bot.bot
Filter
instBot
—mapā‚‚_eq_bot_iff
mapā‚‚_comm šŸ“–mathematical—map₂—mapā‚‚_swap
mapā‚‚_curry šŸ“–mathematical—mapā‚‚
map
SProd.sprod
Filter
instSProd
—map_prod_eq_mapā‚‚'
mapā‚‚_distrib_le_left šŸ“–mathematical—Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapā‚‚
—inter_mem
image2_mem_mapā‚‚
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image2_distrib_subset_left
Set.image2_subset
Set.image2_subset_right
Set.inter_subset_left
Set.inter_subset_right
mapā‚‚_distrib_le_right šŸ“–mathematical—Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapā‚‚
—image2_mem_mapā‚‚
inter_mem
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image2_distrib_subset_right
Set.image2_subset
Set.image2_subset_left
Set.inter_subset_left
Set.inter_subset_right
mapā‚‚_eq_bot_iff šŸ“–mathematical—mapā‚‚
Bot.bot
Filter
instBot
——
mapā‚‚_inf_subset_left šŸ“–mathematical—Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapā‚‚
instInf
—Monotone.map_inf_le
mapā‚‚_mono_right
mapā‚‚_inf_subset_right šŸ“–mathematical—Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapā‚‚
instInf
—Monotone.map_inf_le
mapā‚‚_mono_left
mapā‚‚_left šŸ“–mathematical—map₂—map_prod_eq_mapā‚‚
map_fst_prod
mapā‚‚_left_comm šŸ“–mathematical—map₂—mapā‚‚_swap
mapā‚‚_assoc
mapā‚‚_left_identity šŸ“–mathematical—mapā‚‚
Filter
instPure
—mapā‚‚_pure_left
map_id
mapā‚‚_map_left šŸ“–mathematical—mapā‚‚
map
—map_prod_eq_mapā‚‚
map_id
prod_map_map_eq
map_map
mapā‚‚_map_left_anticomm šŸ“–mathematical—mapā‚‚
map
—map_mapā‚‚_antidistrib_left
mapā‚‚_map_left_comm šŸ“–mathematical—mapā‚‚
map
—map_mapā‚‚_distrib_left
mapā‚‚_map_right šŸ“–mathematical—mapā‚‚
map
—mapā‚‚_swap
mapā‚‚_map_left
mapā‚‚_mk_eq_prod šŸ“–mathematical—mapā‚‚
SProd.sprod
Filter
instSProd
—map_id'
mapā‚‚_mono šŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map₂——
mapā‚‚_mono_left šŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map₂—mapā‚‚_mono
Set.Subset.rfl
mapā‚‚_mono_right šŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map₂—mapā‚‚_mono
Set.Subset.rfl
mapā‚‚_neBot_iff šŸ“–mathematical—NeBot
mapā‚‚
——
mapā‚‚_pure šŸ“–mathematical—mapā‚‚
Filter
instPure
—mapā‚‚_pure_right
map_pure
mapā‚‚_pure_left šŸ“–mathematical—mapā‚‚
Filter
instPure
map
—map_prod_eq_mapā‚‚
pure_prod
map_map
mapā‚‚_pure_right šŸ“–mathematical—mapā‚‚
Filter
instPure
map
—map_prod_eq_mapā‚‚
prod_pure
map_map
mapā‚‚_right šŸ“–mathematical—map₂—mapā‚‚_swap
mapā‚‚_left
mapā‚‚_right_comm šŸ“–mathematical—map₂—mapā‚‚_swap
mapā‚‚_assoc
mapā‚‚_right_identity šŸ“–mathematical—mapā‚‚
Filter
instPure
—mapā‚‚_pure_right
map_id'
mapā‚‚_sup_left šŸ“–mathematical—mapā‚‚
Filter
instSup
—sup_prod
map_sup
mapā‚‚_sup_right šŸ“–mathematical—mapā‚‚
Filter
instSup
—prod_sup
map_sup
mapā‚‚_swap šŸ“–mathematical—map₂—map_prod_eq_mapā‚‚
prod_comm
map_map
mem_mapā‚‚_iff šŸ“–mathematical—Set
Filter
instMembership
mapā‚‚
Set.instHasSubset
Set.image2
——

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
mapā‚‚ šŸ“–mathematicalFilter.HasBasisFilter.mapā‚‚
Set.image2
—map
prod

Filter.NeBot

Theorems

NameKindAssumesProvesValidatesDepends On
mapā‚‚ šŸ“–mathematical—Filter.NeBot
Filter.mapā‚‚
—Filter.mapā‚‚_neBot_iff
of_mapā‚‚_left šŸ“–mathematical—Filter.NeBot—Filter.mapā‚‚_neBot_iff
of_mapā‚‚_right šŸ“–mathematical—Filter.NeBot—Filter.mapā‚‚_neBot_iff

Filter.mapā‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
neBot šŸ“–mathematical—Filter.NeBot
Filter.mapā‚‚
—Filter.NeBot.mapā‚‚

---

← Back to Index