Documentation Verification Report

Partial

📁 Source: Mathlib/Order/Filter/Partial.lean

Statistics

MetricCount
DefinitionsPTendsto, PTendsto', RTendsto, RTendsto', pcomap', pmap, rcomap, rcomap', rmap
9
Theoremsmem_pmap, mem_rcomap', mem_rmap, pmap_res, ptendsto'_def, ptendsto'_of_ptendsto, ptendsto_def, ptendsto_iff_rtendsto, ptendsto_of_ptendsto', rcomap'_compose, rcomap'_rcomap', rcomap'_sets, rcomap_compose, rcomap_rcomap, rcomap_sets, rmap_compose, rmap_rmap, rmap_sets, rtendsto'_def, rtendsto_def, rtendsto_iff_le_rcomap, tendsto_iff_ptendsto, tendsto_iff_ptendsto_univ, tendsto_iff_rtendsto, tendsto_iff_rtendsto'
25
Total34

Filter

Definitions

NameCategoryTheorems
PTendsto 📖MathDef
7 mathmath: tendsto_iff_ptendsto, ptendsto_nhds, ptendsto_def, tendsto_iff_ptendsto_univ, continuousWithinAt_iff_ptendsto_res, ptendsto_of_ptendsto', ptendsto_iff_rtendsto
PTendsto' 📖MathDef
4 mathmath: ptendsto'_of_ptendsto, pcontinuous_iff', ptendsto'_nhds, ptendsto'_def
RTendsto 📖MathDef
5 mathmath: rtendsto_def, tendsto_iff_rtendsto, rtendsto_iff_le_rcomap, ptendsto_iff_rtendsto, rtendsto_nhds
RTendsto' 📖MathDef
3 mathmath: rtendsto'_nhds, rtendsto'_def, tendsto_iff_rtendsto'
pcomap' 📖CompOp
pmap 📖CompOp
2 mathmath: mem_pmap, pmap_res
rcomap 📖CompOp
4 mathmath: rcomap_compose, rcomap_sets, rcomap_rcomap, rtendsto_iff_le_rcomap
rcomap' 📖CompOp
4 mathmath: rcomap'_compose, rcomap'_rcomap', rcomap'_sets, mem_rcomap'
rmap 📖CompOp
4 mathmath: mem_rmap, rmap_compose, rmap_sets, rmap_rmap

Theorems

NameKindAssumesProvesValidatesDepends On
mem_pmap 📖mathematicalSet
Filter
instMembership
pmap
PFun.core
mem_rcomap' 📖mathematicalSet
Filter
instMembership
rcomap'
Set.instHasSubset
SetRel.preimage
mem_rmap 📖mathematicalSet
Filter
instMembership
rmap
SetRel.core
pmap_res 📖mathematicalpmap
PFun.res
map
Filter
instInf
principal
ext
PFun.core_res
ptendsto'_def 📖mathematicalPTendsto'
Set
Filter
instMembership
PFun.preimage
rtendsto'_def
ptendsto'_of_ptendsto 📖mathematicalSet
Filter
instMembership
PFun.Dom
PTendsto
PTendsto'ptendsto_def
ptendsto'_def
PFun.preimage_eq
inter_mem
ptendsto_def 📖mathematicalPTendsto
Set
Filter
instMembership
PFun.core
ptendsto_iff_rtendsto 📖mathematicalPTendsto
RTendsto
PFun.graph'
ptendsto_of_ptendsto' 📖mathematicalPTendsto'PTendstoptendsto_def
ptendsto'_def
mem_of_superset
PFun.preimage_subset_core
rcomap'_compose 📖mathematicalFilter
rcomap'
SetRel.comp
rcomap'_rcomap'
rcomap'_rcomap' 📖mathematicalrcomap'
SetRel.comp
ext
SetRel.preimage_comp
LE.le.trans
SetRel.preimage_mono
Set.Subset.rfl
rcomap'_sets 📖mathematicalsets
rcomap'
SetRel.image
Set
setOf
Set.instHasSubset
SetRel.preimage
rcomap_compose 📖mathematicalFilter
rcomap
SetRel.comp
rcomap_rcomap
rcomap_rcomap 📖mathematicalrcomap
SetRel.comp
filter_eq
Set.ext
SetRel.core_comp
Set.Subset.trans
SetRel.core_mono
Set.Subset.rfl
rcomap_sets 📖mathematicalsets
rcomap
SetRel.image
Set
setOf
Set.instHasSubset
SetRel.core
rmap_compose 📖mathematicalFilter
rmap
SetRel.comp
rmap_rmap
rmap_rmap 📖mathematicalrmap
SetRel.comp
filter_eq
SetRel.core_comp
rmap_sets 📖mathematicalsets
rmap
Set.preimage
Set
SetRel.core
rtendsto'_def 📖mathematicalRTendsto'
Set
Filter
instMembership
SetRel.preimage
Set.Subset.rfl
mem_of_superset
rtendsto_def 📖mathematicalRTendsto
Set
Filter
instMembership
SetRel.core
rtendsto_iff_le_rcomap 📖mathematicalRTendsto
Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
rcomap
rtendsto_def
mem_sets
mem_of_superset
Set.Subset.rfl
tendsto_iff_ptendsto 📖mathematicalTendsto
Filter
instInf
principal
PTendsto
PFun.res
pmap_res
tendsto_iff_ptendsto_univ 📖mathematicalTendsto
PTendsto
PFun.res
Set.univ
tendsto_iff_ptendsto
principal_univ
inf_of_le_left
tendsto_iff_rtendsto 📖mathematicalTendsto
RTendsto
Function.graph
tendsto_iff_rtendsto' 📖mathematicalTendsto
RTendsto'
Function.graph

---

← Back to Index