Documentation Verification Report

Pointwise

πŸ“ Source: Mathlib/Order/Filter/Pointwise.lean

Statistics

MetricCount
DefinitionsaddAction, addActionFilter, addCommMonoid, addCommSemigroup, addMonoid, addSemigroup, addZeroClass, commMonoid, commSemigroup, distribMulActionFilter, divisionCommMonoid, divisionMonoid, instAdd, instDistribNeg, instDiv, instInv, instInvolutiveInv, instInvolutiveNeg, instMul, instNPow, instNSMul, instNeg, instOne, instSMul, instSMulFilter, instSub, instVAdd, instVAddFilter, instVSub, instZPow, instZSMul, instZero, mapAddMonoidHom, mapMonoidHom, monoid, mulAction, mulActionFilter, mulDistribMulActionFilter, mulOneClass, pureAddHom, pureAddMonoidHom, pureMonoidHom, pureMulHom, pureOneHom, pureZeroHom, semigroup, subtractionCommMonoid, subtractionMonoid
48
Theoremsadd, div, inv, mul, neg, smul, sub, vadd, add, div, div_zero_nonneg, inv, le_one_iff, mul, mul_zero_nonneg, neg, nonneg_sub, nonpos_iff, of_add_left, of_add_right, of_div_left, of_div_right, of_mul_left, of_mul_right, of_smul_filter, of_smul_left, of_smul_right, of_sub_left, of_sub_right, of_vadd_filter, of_vadd_left, of_vadd_right, of_vsub_left, of_vsub_right, one_le_div, smul, smul_filter, smul_zero_nonneg, sub, vadd, vadd_filter, vsub, zero_div_nonneg, zero_mul_nonneg, zero_smul_nonneg, add_add, div_div, inv_inv, mul_mul, neg_neg, sub_sub, instNeBot, addLeftMono, addRightMono, add_bot, add_eq_bot_iff, add_eq_zero_iff, add_mem_add, add_mul_subset, add_neBot_iff, add_pure, add_top_of_nonneg, bot_add, bot_div, bot_mul, bot_pow, bot_smul, bot_sub, bot_vadd, bot_vsub, coe_pureAddHom, coe_pureAddMonoidHom, coe_pureMonoidHom, coe_pureMulHom, coe_pureOneHom, coe_pureZeroHom, comap_add_comap_le, comap_inv, comap_mul_comap_le, comap_neg, covariant_div, covariant_smul, covariant_smul_filter, covariant_sub, covariant_swap_div, covariant_swap_sub, covariant_vadd, covariant_vadd_filter, instNeBot, div_bot, div_eq_bot_iff, div_le_div, div_le_div_left, div_le_div_right, div_mem_div, div_neBot_iff, div_pure, eventually_one, eventually_zero, instNeBot, inv_atTop, inv_eq_bot_iff, inv_le_iff_le_inv, inv_le_inv, inv_le_inv_iff, inv_le_self, inv_mem_inv, inv_pure, isAddUnit_iff, isAddUnit_pure, isCentralScalar, isCentralVAdd, isScalarTower, isScalarTower', isScalarTower'', isUnit_iff, isUnit_iff_singleton, isUnit_pure, le_add_iff, le_div_iff, le_mul_iff, le_one_iff, le_smul_iff, le_sub_iff, le_vadd_iff, le_vsub_iff, map_add, map_div, map_inv, map_inv', map_mul, map_neg, map_neg', map_one, map_one', map_smul, map_sub, map_vadd, map_zero, map_zero', mapβ‚‚_add, mapβ‚‚_div, mapβ‚‚_mul, mapβ‚‚_smul, mapβ‚‚_sub, mapβ‚‚_vadd, mapβ‚‚_vsub, mem_add, mem_div, mem_inv, mem_mul, mem_neg, mem_one, mem_smul, mem_smul_filter, mem_sub, mem_vadd, mem_vadd_filter, mem_vsub, mem_zero, instNeBot, mulLeftMono, mulRightMono, mul_add_subset, mul_bot, mul_eq_bot_iff, mul_eq_one_iff, mul_mem_mul, mul_neBot_iff, mul_pure, mul_top_of_one_le, neBot_inv_iff, neBot_neg_iff, instNeBot, neg_atTop, neg_eq_bot_iff, neg_le_iff_le_neg, neg_le_neg, neg_le_neg_iff, neg_le_self, neg_mem_neg, neg_pure, nonneg_sub_iff, nonpos_iff, not_nonneg_sub_iff, not_one_le_div_iff, nsmul_bot, nsmul_mem_nsmul, nsmul_top, one_le_div_iff, one_mem_one, one_neBot, one_prod, one_prod_one, pow_mem_pow, principal_one, principal_zero, prod_one, prod_zero, pureAddHom_apply, pureAddMonoidHom_apply, pureMonoidHom_apply, pureMulHom_apply, pureOneHom_apply, pureZeroHom_apply, pure_add, pure_add_pure, pure_div, pure_div_pure, pure_mul, pure_mul_pure, pure_one, pure_smul, pure_smul_pure, pure_sub, pure_sub_pure, pure_vadd, pure_vadd_pure, pure_vsub, pure_vsub_pure, pure_zero, instNeBot, smulCommClass, smulCommClass_filter, smulCommClass_filter', smulCommClass_filter'', smul_bot, smul_eq_bot_iff, instNeBot, smul_filter_bot, smul_filter_eq_bot_iff, smul_filter_le_smul_filter, smul_filter_neBot_iff, smul_le_smul, smul_le_smul_left, smul_le_smul_right, smul_mem_smul, smul_neBot_iff, smul_pure, smul_set_mem_smul_filter, smul_tendsto_smul_iff, smul_tendsto_smul_iffβ‚€, instNeBot, sub_bot, sub_eq_bot_iff, sub_le_sub, sub_le_sub_left, sub_le_sub_right, sub_mem_sub, sub_neBot_iff, sub_pure, tendsto_one, tendsto_zero, top_add_of_nonneg, top_add_top, top_mul_of_one_le, top_mul_top, top_pow, instNeBot, vaddAssocClass, vaddAssocClass', vaddAssocClass'', vaddCommClass, vaddCommClass_filter, vaddCommClass_filter', vaddCommClass_filter'', vadd_bot, vadd_eq_bot_iff, instNeBot, vadd_filter_bot, vadd_filter_eq_bot_iff, vadd_filter_le_vadd_filter, vadd_filter_neBot_iff, vadd_le_vadd, vadd_le_vadd_left, vadd_le_vadd_right, vadd_mem_vadd, vadd_neBot_iff, vadd_pure, vadd_set_mem_vadd_filter, vadd_tendsto_vadd_iff, instNeBot, vsub_bot, vsub_eq_bot_iff, vsub_le_vsub, vsub_le_vsub_left, vsub_le_vsub_right, vsub_mem_vsub, vsub_neBot_iff, vsub_pure, zero_mem_zero, zero_neBot, zero_prod, zero_prod_zero, zero_smul_filter, zero_smul_filter_nonpos, filter, vadd_tendsto_vadd_iff, filter, smul_tendsto_smul_iff
300
Total348

Filter

Definitions

NameCategoryTheorems
addAction πŸ“–CompOpβ€”
addActionFilter πŸ“–CompOpβ€”
addCommMonoid πŸ“–CompOpβ€”
addCommSemigroup πŸ“–CompOpβ€”
addMonoid πŸ“–CompOp
3 mathmath: IsAddUnit.filter, isAddUnit_iff, isAddUnit_pure
addSemigroup πŸ“–CompOpβ€”
addZeroClass πŸ“–CompOp
2 mathmath: pureAddMonoidHom_apply, coe_pureAddMonoidHom
commMonoid πŸ“–CompOpβ€”
commSemigroup πŸ“–CompOpβ€”
distribMulActionFilter πŸ“–CompOpβ€”
divisionCommMonoid πŸ“–CompOpβ€”
divisionMonoid πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
32 mathmath: top_add_top, add_pure, map_add, add_eq_zero_iff, HasBasis.add, nhds_add_nhds_zero, addRightMono, top_add_of_nonneg, add_eq_bot_iff, le_add_iff, add_top_of_nonneg, addLeftMono, le_nhds_add, nhds_add, nhds_zero_add_nhds, Tendsto.add_add, pure_add, add.instNeBot, add_mem_add, NeBot.add, add_neBot_iff, mul_add_subset, nhdsAddHom_apply, add_mul_subset, pureAddHom_apply, mapβ‚‚_add, bot_add, mem_add, comap_add_comap_le, pure_add_pure, coe_pureAddHom, add_bot
instDistribNeg πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
26 mathmath: mapβ‚‚_div, NeBot.zero_div_nonneg, covariant_div, div_mem_div, div_eq_bot_iff, pure_div, div_neBot_iff, covariant_swap_div, div_le_div, div.instNeBot, div_le_div_left, not_one_le_div_iff, le_div_iff, div_le_div_right, div_bot, bot_div, one_le_div_iff, div_pure, mem_div, HasBasis.div, Tendsto.div_div, map_div, NeBot.one_le_div, NeBot.div, NeBot.div_zero_nonneg, pure_div_pure
instInv πŸ“–CompOp
31 mathmath: inv_le_inv_iff, inv_atBotβ‚€, inv_nhdsWithin_ne_zero, map_inv, inv_atTopβ‚€, inv_nhdsNE_zero, inv_atTop, map_inv', inv_nhdsGT, mem_inv, MeasureTheory.inv_ae, inv_coboundedβ‚€, inv_nhdsNE, inv_nhdsLT, inv_nhdsGT_zero, inv_le_inv, NeBot.inv, nhds_invβ‚€, Tendsto.inv_inv, inv.instNeBot, HasBasis.inv, inv_nhdsLT_zero, comap_inv, inv_eq_bot_iff, inv_mem_inv, neBot_inv_iff, nhds_inv, inv_pure, inv_le_self, inv_cobounded, inv_le_iff_le_inv
instInvolutiveInv πŸ“–CompOpβ€”
instInvolutiveNeg πŸ“–CompOpβ€”
instMul πŸ“–CompOp
34 mathmath: map_mul, bot_mul, nhds_mul_nhds_one, pure_mul, mul_mem_mul, mem_mul, le_mul_iff, pure_mul_pure, NeBot.mul, NeBot.zero_mul_nonneg, mul_pure, top_mul_top, mulLeftMono, comap_mul_comap_le, mul_eq_bot_iff, mapβ‚‚_mul, mul.instNeBot, coe_pureMulHom, NeBot.mul_zero_nonneg, mul_add_subset, nhds_mul, top_mul_of_one_le, mul_bot, pureMulHom_apply, add_mul_subset, mul_neBot_iff, mul_eq_one_iff, mul_top_of_one_le, le_nhds_mul, nhds_one_mul_nhds, mulRightMono, Tendsto.mul_mul, nhdsMulHom_apply, HasBasis.mul
instNPow πŸ“–CompOp
3 mathmath: top_pow, pow_mem_pow, bot_pow
instNSMul πŸ“–CompOp
3 mathmath: nsmul_mem_nsmul, nsmul_bot, nsmul_top
instNeg πŸ“–CompOp
23 mathmath: neg_atTop, comap_neg, neg_le_self, map_neg, neBot_neg_iff, neg_mem_neg, nhds_neg, map_neg', neg_nhdsGT, neg_nhdsLT, neg_le_neg, neg_nhdsNE, neg_pure, Tendsto.neg_neg, neg_eq_bot_iff, MeasureTheory.neg_ae, neg_cobounded, mem_neg, neg_le_iff_le_neg, HasBasis.neg, neg.instNeBot, NeBot.neg, neg_le_neg_iff
instOne πŸ“–CompOp
21 mathmath: one_prod_one, one_le_nhds_iff, tendsto_one, mem_one, le_one_iff, one_mem_one, map_one', NeBot.le_one_iff, pureOneHom_apply, prod_one, not_one_le_div_iff, eventually_one, pure_one, one_le_div_iff, coe_pureOneHom, mul_eq_one_iff, principal_one, one_neBot, one_prod, map_one, NeBot.one_le_div
instSMul πŸ“–CompOp
29 mathmath: le_smul_iff, smulCommClass, bot_smul, smul_mem_smul, mapβ‚‚_smul, NeBot.zero_smul_nonneg, NeBot.smul_zero_nonneg, smul_pure, smulCommClass_filter'', mem_smul, smul_neBot_iff, pure_smul, smul_eq_bot_iff, top_smul_nhds_zero, tangentConeAt_def, HasBasis.smul, smul_bot, pure_smul_pure, smulCommClass_filter', NeBot.smul, covariant_smul, isScalarTower'', smul.instNeBot, smul_le_smul_right, AffineSpace.asymptoticNhds_eq_smul, smul_le_smul, AffineSpace.asymptoticNhds_eq_smul_vadd, smul_le_smul_left, isScalarTower'
instSMulFilter πŸ“–CompOp
29 mathmath: smul_tendsto_smul_iffβ‚€, punctured_nhds_smul, smul_filter.instNeBot, isCentralScalar, smul_uniformityβ‚€, zero_smul_filter_nonpos, nhds_smulβ‚€, smulCommClass_filter'', smulCommClass_filter, zero_smul_filter, MeasureTheory.smul_ae, isScalarTower, smul_filter_eq_bot_iff, smul_filter_le_smul_filter, smulCommClass_filter', IsUnit.smul_uniformity, punctured_nhds_smulβ‚€, IsUnit.smul_tendsto_smul_iff, map_smul, smul_uniformity, smul_tendsto_smul_iff, NeBot.smul_filter, smul_filter_neBot_iff, mem_smul_filter, smul_set_mem_smul_filter, covariant_smul_filter, isScalarTower', nhds_smul, smul_filter_bot
instSub πŸ“–CompOp
24 mathmath: bot_sub, sub.instNeBot, le_sub_iff, mem_sub, pure_sub_pure, map_sub, not_nonneg_sub_iff, sub_neBot_iff, sub_le_sub, pure_sub, nonneg_sub_iff, NeBot.sub, Tendsto.sub_sub, sub_pure, sub_le_sub_right, covariant_sub, mapβ‚‚_sub, sub_mem_sub, sub_bot, HasBasis.sub, sub_le_sub_left, NeBot.nonneg_sub, sub_eq_bot_iff, covariant_swap_sub
instVAdd πŸ“–CompOp
25 mathmath: vadd_le_vadd, mem_vadd, vaddCommClass_filter'', pure_vadd_pure, vaddAssocClass'', vadd_mem_vadd, bot_vadd, vadd_neBot_iff, AffineSpace.asymptoticNhds_vadd_pure, mapβ‚‚_vadd, vadd_le_vadd_left, vadd_pure, vadd_le_vadd_right, HasBasis.vadd, NeBot.vadd, vaddCommClass, covariant_vadd, vadd_bot, vadd_eq_bot_iff, vadd.instNeBot, le_vadd_iff, AffineSpace.asymptoticNhds_eq_smul_vadd, vaddAssocClass', vaddCommClass_filter', pure_vadd
instVAddFilter πŸ“–CompOp
24 mathmath: MeasureTheory.vadd_ae, vaddCommClass_filter'', nhds_vadd, vaddAssocClass, vadd_tendsto_vadd_iff, NeBot.vadd_filter, IsAddUnit.vadd_tendsto_vadd_iff, isCentralVAdd, AffineSpace.vadd_asymptoticNhds, vaddCommClass_filter, vadd_filter_bot, vadd_filter_le_vadd_filter, mem_vadd_filter, vadd_uniformity, covariant_vadd_filter, vadd_filter_neBot_iff, IsAddUnit.vadd_uniformity, vadd_filter_eq_bot_iff, punctured_nhds_vadd, vadd_filter.instNeBot, map_vadd, vadd_set_mem_vadd_filter, vaddAssocClass', vaddCommClass_filter'
instVSub πŸ“–CompOp
16 mathmath: NeBot.vsub, vsub.instNeBot, mapβ‚‚_vsub, vsub_le_vsub_left, bot_vsub, vsub_bot, vsub_eq_bot_iff, le_vsub_iff, pure_vsub_pure, mem_vsub, vsub_pure, pure_vsub, vsub_neBot_iff, vsub_le_vsub_right, vsub_le_vsub, vsub_mem_vsub
instZPow πŸ“–CompOpβ€”
instZSMul πŸ“–CompOpβ€”
instZero πŸ“–CompOp
29 mathmath: NeBot.nonpos_iff, pure_zero, NeBot.zero_div_nonneg, add_eq_zero_iff, NeBot.zero_smul_nonneg, map_zero', zero_smul_filter_nonpos, NeBot.smul_zero_nonneg, not_nonneg_sub_iff, tendsto_zero, nonpos_iff, prod_zero, zero_smul_filter, coe_pureZeroHom, NeBot.zero_mul_nonneg, nonneg_sub_iff, eventually_zero, zero_prod_zero, zero_prod, nonneg_nhds_iff, NeBot.mul_zero_nonneg, zero_neBot, principal_zero, mem_zero, NeBot.nonneg_sub, map_zero, zero_mem_zero, pureZeroHom_apply, NeBot.div_zero_nonneg
mapAddMonoidHom πŸ“–CompOpβ€”
mapMonoidHom πŸ“–CompOpβ€”
monoid πŸ“–CompOp
4 mathmath: isUnit_iff_singleton, isUnit_iff, isUnit_pure, IsUnit.filter
mulAction πŸ“–CompOpβ€”
mulActionFilter πŸ“–CompOpβ€”
mulDistribMulActionFilter πŸ“–CompOpβ€”
mulOneClass πŸ“–CompOp
2 mathmath: pureMonoidHom_apply, coe_pureMonoidHom
pureAddHom πŸ“–CompOp
2 mathmath: pureAddHom_apply, coe_pureAddHom
pureAddMonoidHom πŸ“–CompOp
2 mathmath: pureAddMonoidHom_apply, coe_pureAddMonoidHom
pureMonoidHom πŸ“–CompOp
2 mathmath: pureMonoidHom_apply, coe_pureMonoidHom
pureMulHom πŸ“–CompOp
2 mathmath: coe_pureMulHom, pureMulHom_apply
pureOneHom πŸ“–CompOp
2 mathmath: pureOneHom_apply, coe_pureOneHom
pureZeroHom πŸ“–CompOp
2 mathmath: coe_pureZeroHom, pureZeroHom_apply
semigroup πŸ“–CompOpβ€”
subtractionCommMonoid πŸ“–CompOpβ€”
subtractionMonoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addLeftMono πŸ“–mathematicalβ€”AddLeftMono
Filter
instAdd
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_left
addRightMono πŸ“–mathematicalβ€”AddRightMono
Filter
instAdd
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_right
add_bot πŸ“–mathematicalβ€”Filter
instAdd
Bot.bot
instBot
β€”mapβ‚‚_bot_right
add_eq_bot_iff πŸ“–mathematicalβ€”Filter
instAdd
Bot.bot
instBot
β€”mapβ‚‚_eq_bot_iff
add_eq_zero_iff πŸ“–mathematicalβ€”Filter
instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
instPure
β€”zero_mem_zero
zero_neBot
Set.add_eq_zero_iff
Set.Nonempty.subset_zero_iff
NeBot.nonempty_of_mem
add_mem_add
NeBot.le_pure_iff
NeBot.of_add_left
le_pure_iff
NeBot.of_add_right
pure_add_pure
pure_zero
add_mem_add πŸ“–mathematicalSet
Filter
instMembership
instAdd
Set.add
β€”image2_mem_mapβ‚‚
add_mul_subset πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
Distrib.toMul
instAdd
Distrib.toAdd
β€”mapβ‚‚_distrib_le_right
add_mul
Distrib.rightDistribClass
add_neBot_iff πŸ“–mathematicalβ€”NeBot
Filter
instAdd
β€”mapβ‚‚_neBot_iff
add_pure πŸ“–mathematicalβ€”Filter
instAdd
instPure
map
β€”mapβ‚‚_pure_right
add_top_of_nonneg πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAdd
AddZero.toAdd
Top.top
instTop
β€”top_le_iff
mem_add
mem_top
Set.univ_subset_iff
Set.add_univ_of_zero_mem
mem_zero
bot_add πŸ“–mathematicalβ€”Filter
instAdd
Bot.bot
instBot
β€”mapβ‚‚_bot_left
bot_div πŸ“–mathematicalβ€”Filter
instDiv
Bot.bot
instBot
β€”mapβ‚‚_bot_left
bot_mul πŸ“–mathematicalβ€”Filter
instMul
Bot.bot
instBot
β€”mapβ‚‚_bot_left
bot_pow πŸ“–mathematicalβ€”Filter
instNPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
Bot.bot
instBot
β€”pow_succ'
bot_mul
bot_smul πŸ“–mathematicalβ€”Filter
instSMul
Bot.bot
instBot
β€”mapβ‚‚_bot_left
bot_sub πŸ“–mathematicalβ€”Filter
instSub
Bot.bot
instBot
β€”mapβ‚‚_bot_left
bot_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
instVAdd
Bot.bot
instBot
β€”mapβ‚‚_bot_left
bot_vsub πŸ“–mathematicalβ€”VSub.vsub
Filter
instVSub
Bot.bot
instBot
β€”mapβ‚‚_bot_left
coe_pureAddHom πŸ“–mathematicalβ€”DFunLike.coe
AddHom
Filter
instAdd
AddHom.funLike
pureAddHom
instPure
β€”β€”
coe_pureAddMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Filter
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
pureAddMonoidHom
instPure
β€”β€”
coe_pureMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Filter
MulOneClass.toMulOne
mulOneClass
MonoidHom.instFunLike
pureMonoidHom
instPure
β€”β€”
coe_pureMulHom πŸ“–mathematicalβ€”DFunLike.coe
MulHom
Filter
instMul
MulHom.funLike
pureMulHom
instPure
β€”β€”
coe_pureOneHom πŸ“–mathematicalβ€”DFunLike.coe
OneHom
Filter
instOne
OneHom.funLike
pureOneHom
instPure
β€”β€”
coe_pureZeroHom πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
Filter
instZero
ZeroHom.funLike
pureZeroHom
instPure
β€”β€”
comap_add_comap_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instAdd
AddZero.toAdd
AddZeroClass.toAddZero
comap
DFunLike.coe
β€”Set.Subset.rfl
HasSubset.Subset.trans
Set.instIsTransSubset
Set.preimage_add_preimage_subset
Set.preimage_mono
comap_inv πŸ“–mathematicalβ€”comap
InvolutiveInv.toInv
Filter
instInv
β€”map_eq_comap_of_inverse
inv_comp_inv
comap_mul_comap_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
MulOne.toMul
MulOneClass.toMulOne
comap
DFunLike.coe
β€”Set.Subset.rfl
HasSubset.Subset.trans
Set.instIsTransSubset
Set.preimage_mul_preimage_subset
Set.preimage_mono
comap_neg πŸ“–mathematicalβ€”comap
InvolutiveNeg.toNeg
Filter
instNeg
β€”map_eq_comap_of_inverse
neg_comp_neg
covariant_div πŸ“–mathematicalβ€”CovariantClass
Filter
instDiv
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_left
covariant_smul πŸ“–mathematicalβ€”CovariantClass
Filter
instSMul
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_left
covariant_smul_filter πŸ“–mathematicalβ€”CovariantClass
Filter
instSMulFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”map_mono
covariant_sub πŸ“–mathematicalβ€”CovariantClass
Filter
instSub
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_left
covariant_swap_div πŸ“–mathematicalβ€”CovariantClass
Filter
Function.swap
instDiv
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_right
covariant_swap_sub πŸ“–mathematicalβ€”CovariantClass
Filter
Function.swap
instSub
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_right
covariant_vadd πŸ“–mathematicalβ€”CovariantClass
Filter
HVAdd.hVAdd
instHVAdd
instVAdd
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_left
covariant_vadd_filter πŸ“–mathematicalβ€”CovariantClass
Filter
HVAdd.hVAdd
instHVAdd
instVAddFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”map_mono
div_bot πŸ“–mathematicalβ€”Filter
instDiv
Bot.bot
instBot
β€”mapβ‚‚_bot_right
div_eq_bot_iff πŸ“–mathematicalβ€”Filter
instDiv
Bot.bot
instBot
β€”mapβ‚‚_eq_bot_iff
div_le_div πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instDivβ€”mapβ‚‚_mono
div_le_div_left πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instDivβ€”mapβ‚‚_mono_left
div_le_div_right πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instDivβ€”mapβ‚‚_mono_right
div_mem_div πŸ“–mathematicalSet
Filter
instMembership
instDiv
Set.div
β€”image2_mem_mapβ‚‚
div_neBot_iff πŸ“–mathematicalβ€”NeBot
Filter
instDiv
β€”mapβ‚‚_neBot_iff
div_pure πŸ“–mathematicalβ€”Filter
instDiv
instPure
map
β€”mapβ‚‚_pure_right
eventually_one πŸ“–mathematicalβ€”Eventually
Filter
instOne
β€”eventually_pure
eventually_zero πŸ“–mathematicalβ€”Eventually
Filter
instZero
β€”eventually_pure
inv_atTop πŸ“–mathematicalβ€”Filter
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
atTop
PartialOrder.toPreorder
atBot
β€”OrderIso.map_atTop
IsOrderedMonoid.toMulLeftMono
covariant_swap_mul_of_covariant_mul
inv_eq_bot_iff πŸ“–mathematicalβ€”Filter
instInv
Bot.bot
instBot
β€”map_eq_bot_iff
inv_le_iff_le_inv πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInv
InvolutiveInv.toInv
β€”inv_le_inv_iff
inv_inv
inv_le_inv πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInvβ€”map_mono
inv_le_inv_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInv
InvolutiveInv.toInv
β€”inv_le_inv
inv_inv
inv_le_self πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInv
InvolutiveInv.toInv
β€”LE.le.antisymm
inv_le_iff_le_inv
Eq.le
inv_mem_inv πŸ“–mathematicalSet
Filter
instMembership
instInv
InvolutiveInv.toInv
Set.inv
β€”mem_inv
Set.inv_preimage
inv_inv
inv_pure πŸ“–mathematicalβ€”Filter
instInv
instPure
β€”β€”
isAddUnit_iff πŸ“–mathematicalβ€”IsAddUnit
Filter
addMonoid
SubNegMonoid.toAddMonoid
SubtractionMonoid.toSubNegMonoid
instPure
β€”add_eq_zero_iff
AddUnits.add_neg
pure_injective
pure_add_pure
AddUnits.neg_add
IsAddUnit.filter
isAddUnit_pure πŸ“–mathematicalβ€”IsAddUnit
Filter
addMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instPure
β€”IsAddUnit.filter
AddGroup.isAddUnit
isCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
Filter
instSMulFilter
MulOpposite
β€”IsCentralScalar.op_smul_eq_smul
isCentralVAdd πŸ“–mathematicalβ€”IsCentralVAdd
Filter
instVAddFilter
AddOpposite
β€”IsCentralVAdd.op_vadd_eq_vadd
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
Filter
instSMulFilter
β€”smul_assoc
map_map
isScalarTower' πŸ“–mathematicalβ€”IsScalarTower
Filter
instSMulFilter
instSMul
β€”map_mapβ‚‚_distrib_left
smul_assoc
isScalarTower'' πŸ“–mathematicalβ€”IsScalarTower
Filter
instSMul
β€”mapβ‚‚_assoc
smul_assoc
isUnit_iff πŸ“–mathematicalβ€”IsUnit
Filter
monoid
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
instPure
β€”mul_eq_one_iff
Units.mul_inv
pure_injective
pure_mul_pure
Units.inv_mul
IsUnit.filter
isUnit_iff_singleton πŸ“–mathematicalβ€”IsUnit
Filter
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instPure
β€”β€”
isUnit_pure πŸ“–mathematicalβ€”IsUnit
Filter
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instPure
β€”IsUnit.filter
Group.isUnit
le_add_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instAdd
Set
instMembership
Set.add
β€”le_mapβ‚‚_iff
le_div_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instDiv
Set
instMembership
Set.div
β€”le_mapβ‚‚_iff
le_mul_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
Set
instMembership
Set.mul
β€”le_mapβ‚‚_iff
le_one_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOne
Set
instMembership
Set.one
β€”le_pure_iff
le_smul_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSMul
Set
instMembership
Set.smul
β€”le_mapβ‚‚_iff
le_sub_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSub
Set
instMembership
Set.sub
β€”le_mapβ‚‚_iff
le_vadd_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
HVAdd.hVAdd
instHVAdd
instVAdd
Set
instMembership
Set.vadd
β€”le_mapβ‚‚_iff
le_vsub_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
VSub.vsub
instVSub
Set
instMembership
Set.vsub
β€”le_mapβ‚‚_iff
map_add πŸ“–mathematicalβ€”map
DFunLike.coe
Filter
instAdd
β€”map_mapβ‚‚_distrib
map_add
map_div πŸ“–mathematicalβ€”map
DFunLike.coe
Filter
instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
DivisionMonoid.toDivInvMonoid
β€”map_mapβ‚‚_distrib
map_div
map_inv πŸ“–mathematicalβ€”map
Filter
instInv
β€”β€”
map_inv' πŸ“–mathematicalβ€”map
DFunLike.coe
Filter
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Function.Semiconj.filter_map
map_inv
map_mul πŸ“–mathematicalβ€”map
DFunLike.coe
Filter
instMul
β€”map_mapβ‚‚_distrib
map_mul
map_neg πŸ“–mathematicalβ€”map
Filter
instNeg
β€”β€”
map_neg' πŸ“–mathematicalβ€”map
DFunLike.coe
Filter
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Function.Semiconj.filter_map
map_neg
map_one πŸ“–mathematicalβ€”map
DFunLike.coe
Filter
instOne
β€”map_one
map_one' πŸ“–mathematicalβ€”map
Filter
instOne
instPure
β€”β€”
map_smul πŸ“–mathematicalβ€”map
Filter
instSMulFilter
β€”β€”
map_sub πŸ“–mathematicalβ€”map
DFunLike.coe
Filter
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SubtractionMonoid.toSubNegMonoid
β€”map_mapβ‚‚_distrib
map_sub
map_vadd πŸ“–mathematicalβ€”map
HVAdd.hVAdd
instHVAdd
Filter
instVAddFilter
β€”β€”
map_zero πŸ“–mathematicalβ€”map
DFunLike.coe
Filter
instZero
β€”map_zero
map_zero' πŸ“–mathematicalβ€”map
Filter
instZero
instPure
β€”β€”
mapβ‚‚_add πŸ“–mathematicalβ€”mapβ‚‚
Filter
instAdd
β€”β€”
mapβ‚‚_div πŸ“–mathematicalβ€”mapβ‚‚
Filter
instDiv
β€”β€”
mapβ‚‚_mul πŸ“–mathematicalβ€”mapβ‚‚
Filter
instMul
β€”β€”
mapβ‚‚_smul πŸ“–mathematicalβ€”mapβ‚‚
Filter
instSMul
β€”β€”
mapβ‚‚_sub πŸ“–mathematicalβ€”mapβ‚‚
Filter
instSub
β€”β€”
mapβ‚‚_vadd πŸ“–mathematicalβ€”mapβ‚‚
HVAdd.hVAdd
instHVAdd
Filter
instVAdd
β€”β€”
mapβ‚‚_vsub πŸ“–mathematicalβ€”mapβ‚‚
VSub.vsub
Filter
instVSub
β€”β€”
mem_add πŸ“–mathematicalβ€”Set
Filter
instMembership
instAdd
Set.instHasSubset
Set.add
β€”β€”
mem_div πŸ“–mathematicalβ€”Set
Filter
instMembership
instDiv
Set.instHasSubset
Set.div
β€”β€”
mem_inv πŸ“–mathematicalβ€”Set
Filter
instMembership
instInv
Set.preimage
β€”β€”
mem_mul πŸ“–mathematicalβ€”Set
Filter
instMembership
instMul
Set.instHasSubset
Set.mul
β€”β€”
mem_neg πŸ“–mathematicalβ€”Set
Filter
instMembership
instNeg
Set.preimage
β€”β€”
mem_one πŸ“–mathematicalβ€”Set
Filter
instMembership
instOne
Set.instMembership
β€”mem_pure
mem_smul πŸ“–mathematicalβ€”Set
Filter
instMembership
instSMul
Set.instHasSubset
Set.smul
β€”β€”
mem_smul_filter πŸ“–mathematicalβ€”Set
Filter
instMembership
instSMulFilter
Set.preimage
β€”β€”
mem_sub πŸ“–mathematicalβ€”Set
Filter
instMembership
instSub
Set.instHasSubset
Set.sub
β€”β€”
mem_vadd πŸ“–mathematicalβ€”Set
Filter
instMembership
HVAdd.hVAdd
instHVAdd
instVAdd
Set.instHasSubset
Set.vadd
β€”β€”
mem_vadd_filter πŸ“–mathematicalβ€”Set
Filter
instMembership
HVAdd.hVAdd
instHVAdd
instVAddFilter
Set.preimage
β€”β€”
mem_vsub πŸ“–mathematicalβ€”Set
Filter
instMembership
VSub.vsub
instVSub
Set.instHasSubset
Set.vsub
β€”β€”
mem_zero πŸ“–mathematicalβ€”Set
Filter
instMembership
instZero
Set.instMembership
β€”mem_pure
mulLeftMono πŸ“–mathematicalβ€”MulLeftMono
Filter
instMul
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_left
mulRightMono πŸ“–mathematicalβ€”MulRightMono
Filter
instMul
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”mapβ‚‚_mono_right
mul_add_subset πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
Distrib.toMul
instAdd
Distrib.toAdd
β€”mapβ‚‚_distrib_le_left
mul_add
Distrib.leftDistribClass
mul_bot πŸ“–mathematicalβ€”Filter
instMul
Bot.bot
instBot
β€”mapβ‚‚_bot_right
mul_eq_bot_iff πŸ“–mathematicalβ€”Filter
instMul
Bot.bot
instBot
β€”mapβ‚‚_eq_bot_iff
mul_eq_one_iff πŸ“–mathematicalβ€”Filter
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
instPure
β€”one_mem_one
one_neBot
Set.mul_eq_one_iff
Set.Nonempty.subset_one_iff
NeBot.nonempty_of_mem
mul_mem_mul
NeBot.le_pure_iff
NeBot.of_mul_left
le_pure_iff
NeBot.of_mul_right
pure_mul_pure
pure_one
mul_mem_mul πŸ“–mathematicalSet
Filter
instMembership
instMul
Set.mul
β€”image2_mem_mapβ‚‚
mul_neBot_iff πŸ“–mathematicalβ€”NeBot
Filter
instMul
β€”mapβ‚‚_neBot_iff
mul_pure πŸ“–mathematicalβ€”Filter
instMul
instPure
map
β€”mapβ‚‚_pure_right
mul_top_of_one_le πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMul
MulOne.toMul
Top.top
instTop
β€”top_le_iff
Set.univ_subset_iff
Set.mul_univ_of_one_mem
mem_one
neBot_inv_iff πŸ“–mathematicalβ€”NeBot
Filter
instInv
β€”map_neBot_iff
neBot_neg_iff πŸ“–mathematicalβ€”NeBot
Filter
instNeg
β€”map_neBot_iff
neg_atTop πŸ“–mathematicalβ€”Filter
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
atTop
PartialOrder.toPreorder
atBot
β€”OrderIso.map_atTop
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
neg_eq_bot_iff πŸ“–mathematicalβ€”Filter
instNeg
Bot.bot
instBot
β€”map_eq_bot_iff
neg_le_iff_le_neg πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instNeg
InvolutiveNeg.toNeg
β€”neg_le_neg_iff
neg_neg
neg_le_neg πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instNegβ€”map_mono
neg_le_neg_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instNeg
InvolutiveNeg.toNeg
β€”neg_le_neg
neg_neg
neg_le_self πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instNeg
InvolutiveNeg.toNeg
β€”LE.le.antisymm
neg_le_iff_le_neg
Eq.le
neg_mem_neg πŸ“–mathematicalSet
Filter
instMembership
instNeg
InvolutiveNeg.toNeg
Set.neg
β€”mem_neg
Set.neg_preimage
neg_neg
neg_pure πŸ“–mathematicalβ€”Filter
instNeg
instPure
β€”β€”
nonneg_sub_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
β€”Disjoint.le_bot
mem_bot
Set.zero_mem_sub_iff
sub_mem_sub
disjoint_iff
disjoint_of_disjoint_of_mem
nonpos_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instZero
Set
instMembership
Set.zero
β€”le_pure_iff
not_nonneg_sub_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
β€”Iff.not_left
nonneg_sub_iff
not_one_le_div_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
β€”Iff.not_left
one_le_div_iff
nsmul_bot πŸ“–mathematicalβ€”Filter
instNSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
Bot.bot
instBot
β€”succ_nsmul'
bot_add
nsmul_mem_nsmul πŸ“–mathematicalSet
Filter
instMembership
instNSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
Set.NSMul
β€”zero_nsmul
zero_mem_zero
succ_nsmul
add_mem_add
nsmul_top πŸ“–mathematicalβ€”Filter
instNSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toAdd
Top.top
instTop
β€”one_nsmul
succ_nsmul
top_add_top
one_le_div_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
Disjoint
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
β€”Disjoint.le_bot
mem_bot
Set.one_mem_div_iff
div_mem_div
disjoint_iff
disjoint_of_disjoint_of_mem
one_mem_one πŸ“–mathematicalβ€”Set
Filter
instMembership
instOne
Set.one
β€”mem_pure
Set.one_mem_one
one_neBot πŸ“–mathematicalβ€”NeBot
Filter
instOne
β€”pure_neBot
one_prod πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instOne
map
β€”pure_prod
one_prod_one πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instOne
Prod.instOne
β€”prod_pure_pure
pow_mem_pow πŸ“–mathematicalSet
Filter
instMembership
instNPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
Set.NPow
β€”pow_zero
one_mem_one
pow_succ
mul_mem_mul
principal_one πŸ“–mathematicalβ€”principal
Set
Set.one
Filter
instOne
β€”principal_singleton
principal_zero πŸ“–mathematicalβ€”principal
Set
Set.zero
Filter
instZero
β€”principal_singleton
prod_one πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instOne
map
β€”prod_pure
prod_zero πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instZero
map
β€”prod_pure
pureAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
Filter
instAdd
AddHom.funLike
pureAddHom
instPure
β€”β€”
pureAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Filter
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
pureAddMonoidHom
instPure
β€”β€”
pureMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Filter
MulOneClass.toMulOne
mulOneClass
MonoidHom.instFunLike
pureMonoidHom
instPure
β€”β€”
pureMulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MulHom
Filter
instMul
MulHom.funLike
pureMulHom
instPure
β€”β€”
pureOneHom_apply πŸ“–mathematicalβ€”DFunLike.coe
OneHom
Filter
instOne
OneHom.funLike
pureOneHom
instPure
β€”β€”
pureZeroHom_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
Filter
instZero
ZeroHom.funLike
pureZeroHom
instPure
β€”β€”
pure_add πŸ“–mathematicalβ€”Filter
instAdd
instPure
map
β€”mapβ‚‚_pure_left
pure_add_pure πŸ“–mathematicalβ€”Filter
instAdd
instPure
β€”add_pure
pure_div πŸ“–mathematicalβ€”Filter
instDiv
instPure
map
β€”mapβ‚‚_pure_left
pure_div_pure πŸ“–mathematicalβ€”Filter
instDiv
instPure
β€”div_pure
pure_mul πŸ“–mathematicalβ€”Filter
instMul
instPure
map
β€”mapβ‚‚_pure_left
pure_mul_pure πŸ“–mathematicalβ€”Filter
instMul
instPure
β€”mul_pure
pure_one πŸ“–mathematicalβ€”Filter
instPure
instOne
β€”β€”
pure_smul πŸ“–mathematicalβ€”Filter
instSMul
instPure
map
β€”mapβ‚‚_pure_left
pure_smul_pure πŸ“–mathematicalβ€”Filter
instSMul
instPure
β€”smul_pure
pure_sub πŸ“–mathematicalβ€”Filter
instSub
instPure
map
β€”mapβ‚‚_pure_left
pure_sub_pure πŸ“–mathematicalβ€”Filter
instSub
instPure
β€”sub_pure
pure_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
instVAdd
instPure
map
β€”mapβ‚‚_pure_left
pure_vadd_pure πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
instVAdd
instPure
β€”vadd_pure
pure_vsub πŸ“–mathematicalβ€”VSub.vsub
Filter
instVSub
instPure
map
β€”mapβ‚‚_pure_left
pure_vsub_pure πŸ“–mathematicalβ€”VSub.vsub
Filter
instVSub
instPure
β€”vsub_pure
pure_zero πŸ“–mathematicalβ€”Filter
instPure
instZero
β€”β€”
smulCommClass πŸ“–mathematicalβ€”SMulCommClass
Filter
instSMul
β€”mapβ‚‚_left_comm
SMulCommClass.smul_comm
smulCommClass_filter πŸ“–mathematicalβ€”SMulCommClass
Filter
instSMulFilter
β€”map_comm
SMulCommClass.smul_comm
smulCommClass_filter' πŸ“–mathematicalβ€”SMulCommClass
Filter
instSMulFilter
instSMul
β€”map_mapβ‚‚_distrib_right
SMulCommClass.smul_comm
smulCommClass_filter'' πŸ“–mathematicalβ€”SMulCommClass
Filter
instSMul
instSMulFilter
β€”SMulCommClass.symm
smulCommClass_filter'
smul_bot πŸ“–mathematicalβ€”Filter
instSMul
Bot.bot
instBot
β€”mapβ‚‚_bot_right
smul_eq_bot_iff πŸ“–mathematicalβ€”Filter
instSMul
Bot.bot
instBot
β€”mapβ‚‚_eq_bot_iff
smul_filter_bot πŸ“–mathematicalβ€”Filter
instSMulFilter
Bot.bot
instBot
β€”map_bot
smul_filter_eq_bot_iff πŸ“–mathematicalβ€”Filter
instSMulFilter
Bot.bot
instBot
β€”map_eq_bot_iff
smul_filter_le_smul_filter πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSMulFilterβ€”map_mono
smul_filter_neBot_iff πŸ“–mathematicalβ€”NeBot
Filter
instSMulFilter
β€”map_neBot_iff
smul_le_smul πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSMulβ€”mapβ‚‚_mono
smul_le_smul_left πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSMulβ€”mapβ‚‚_mono_left
smul_le_smul_right πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSMulβ€”mapβ‚‚_mono_right
smul_mem_smul πŸ“–mathematicalSet
Filter
instMembership
instSMul
Set.smul
β€”image2_mem_mapβ‚‚
smul_neBot_iff πŸ“–mathematicalβ€”NeBot
Filter
instSMul
β€”mapβ‚‚_neBot_iff
smul_pure πŸ“–mathematicalβ€”Filter
instSMul
instPure
map
β€”mapβ‚‚_pure_right
smul_set_mem_smul_filter πŸ“–mathematicalSet
Filter
instMembership
instSMulFilter
Set.smulSet
β€”image_mem_map
smul_tendsto_smul_iff πŸ“–mathematicalβ€”Tendsto
Pi.instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Filter
instSMulFilter
β€”IsUnit.smul_tendsto_smul_iff
Group.isUnit
smul_tendsto_smul_iffβ‚€ πŸ“–mathematicalβ€”Tendsto
Pi.instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
Filter
instSMulFilter
β€”IsUnit.smul_tendsto_smul_iff
Ne.isUnit
sub_bot πŸ“–mathematicalβ€”Filter
instSub
Bot.bot
instBot
β€”mapβ‚‚_bot_right
sub_eq_bot_iff πŸ“–mathematicalβ€”Filter
instSub
Bot.bot
instBot
β€”mapβ‚‚_eq_bot_iff
sub_le_sub πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSubβ€”mapβ‚‚_mono
sub_le_sub_left πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSubβ€”mapβ‚‚_mono_left
sub_le_sub_right πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSubβ€”mapβ‚‚_mono_right
sub_mem_sub πŸ“–mathematicalSet
Filter
instMembership
instSub
Set.sub
β€”image2_mem_mapβ‚‚
sub_neBot_iff πŸ“–mathematicalβ€”NeBot
Filter
instSub
β€”mapβ‚‚_neBot_iff
sub_pure πŸ“–mathematicalβ€”Filter
instSub
instPure
map
β€”mapβ‚‚_pure_right
tendsto_one πŸ“–mathematicalβ€”Tendsto
Filter
instOne
Eventually
β€”tendsto_pure
tendsto_zero πŸ“–mathematicalβ€”Tendsto
Filter
instZero
Eventually
β€”tendsto_pure
top_add_of_nonneg πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAdd
AddZero.toAdd
Top.top
instTop
β€”top_le_iff
mem_add
mem_top
Set.univ_subset_iff
Set.univ_add_of_zero_mem
mem_zero
top_add_top πŸ“–mathematicalβ€”Filter
instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Top.top
instTop
β€”add_top_of_nonneg
le_top
top_mul_of_one_le πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMul
MulOne.toMul
Top.top
instTop
β€”top_le_iff
Set.univ_subset_iff
Set.univ_mul_of_one_mem
mem_one
top_mul_top πŸ“–mathematicalβ€”Filter
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Top.top
instTop
β€”mul_top_of_one_le
le_top
top_pow πŸ“–mathematicalβ€”Filter
instNPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
Top.top
instTop
β€”pow_one
pow_succ
top_mul_top
vaddAssocClass πŸ“–mathematicalβ€”VAddAssocClass
Filter
instVAddFilter
β€”vadd_assoc
map_map
vaddAssocClass' πŸ“–mathematicalβ€”VAddAssocClass
Filter
instVAddFilter
instVAdd
β€”map_mapβ‚‚_distrib_left
vadd_assoc
vaddAssocClass'' πŸ“–mathematicalβ€”VAddAssocClass
Filter
instVAdd
β€”mapβ‚‚_assoc
vadd_assoc
vaddCommClass πŸ“–mathematicalβ€”VAddCommClass
Filter
instVAdd
β€”mapβ‚‚_left_comm
VAddCommClass.vadd_comm
vaddCommClass_filter πŸ“–mathematicalβ€”VAddCommClass
Filter
instVAddFilter
β€”map_comm
VAddCommClass.vadd_comm
vaddCommClass_filter' πŸ“–mathematicalβ€”VAddCommClass
Filter
instVAddFilter
instVAdd
β€”map_mapβ‚‚_distrib_right
VAddCommClass.vadd_comm
vaddCommClass_filter'' πŸ“–mathematicalβ€”VAddCommClass
Filter
instVAdd
instVAddFilter
β€”VAddCommClass.symm
vaddCommClass_filter'
vadd_bot πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
instVAdd
Bot.bot
instBot
β€”mapβ‚‚_bot_right
vadd_eq_bot_iff πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
instVAdd
Bot.bot
instBot
β€”mapβ‚‚_eq_bot_iff
vadd_filter_bot πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
instVAddFilter
Bot.bot
instBot
β€”map_bot
vadd_filter_eq_bot_iff πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
instVAddFilter
Bot.bot
instBot
β€”map_eq_bot_iff
vadd_filter_le_vadd_filter πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
HVAdd.hVAdd
instHVAdd
instVAddFilter
β€”map_mono
vadd_filter_neBot_iff πŸ“–mathematicalβ€”NeBot
HVAdd.hVAdd
Filter
instHVAdd
instVAddFilter
β€”map_neBot_iff
vadd_le_vadd πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
HVAdd.hVAdd
instHVAdd
instVAdd
β€”mapβ‚‚_mono
vadd_le_vadd_left πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
HVAdd.hVAdd
instHVAdd
instVAdd
β€”mapβ‚‚_mono_left
vadd_le_vadd_right πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
HVAdd.hVAdd
instHVAdd
instVAdd
β€”mapβ‚‚_mono_right
vadd_mem_vadd πŸ“–mathematicalSet
Filter
instMembership
HVAdd.hVAdd
instHVAdd
instVAdd
Set.vadd
β€”image2_mem_mapβ‚‚
vadd_neBot_iff πŸ“–mathematicalβ€”NeBot
HVAdd.hVAdd
Filter
instHVAdd
instVAdd
β€”mapβ‚‚_neBot_iff
vadd_pure πŸ“–mathematicalβ€”HVAdd.hVAdd
Filter
instHVAdd
instVAdd
instPure
map
β€”mapβ‚‚_pure_right
vadd_set_mem_vadd_filter πŸ“–mathematicalSet
Filter
instMembership
HVAdd.hVAdd
instHVAdd
instVAddFilter
Set.vaddSet
β€”image_mem_map
vadd_tendsto_vadd_iff πŸ“–mathematicalβ€”Tendsto
HVAdd.hVAdd
instHVAdd
Pi.instVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Filter
instVAddFilter
β€”IsAddUnit.vadd_tendsto_vadd_iff
AddGroup.isAddUnit
vsub_bot πŸ“–mathematicalβ€”VSub.vsub
Filter
instVSub
Bot.bot
instBot
β€”mapβ‚‚_bot_right
vsub_eq_bot_iff πŸ“–mathematicalβ€”VSub.vsub
Filter
instVSub
Bot.bot
instBot
β€”mapβ‚‚_eq_bot_iff
vsub_le_vsub πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
VSub.vsub
instVSub
β€”mapβ‚‚_mono
vsub_le_vsub_left πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
VSub.vsub
instVSub
β€”mapβ‚‚_mono_left
vsub_le_vsub_right πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
VSub.vsub
instVSub
β€”mapβ‚‚_mono_right
vsub_mem_vsub πŸ“–mathematicalSet
Filter
instMembership
VSub.vsub
instVSub
Set.vsub
β€”image2_mem_mapβ‚‚
vsub_neBot_iff πŸ“–mathematicalβ€”NeBot
VSub.vsub
Filter
instVSub
β€”mapβ‚‚_neBot_iff
vsub_pure πŸ“–mathematicalβ€”VSub.vsub
Filter
instVSub
instPure
map
β€”mapβ‚‚_pure_right
zero_mem_zero πŸ“–mathematicalβ€”Set
Filter
instMembership
instZero
Set.zero
β€”mem_pure
Set.zero_mem_zero
zero_neBot πŸ“–mathematicalβ€”NeBot
Filter
instZero
β€”pure_neBot
zero_prod πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instZero
map
β€”pure_prod
zero_prod_zero πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instZero
Prod.instZero
β€”prod_pure_pure
zero_smul_filter πŸ“–mathematicalβ€”Filter
instSMulFilter
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
instZero
β€”LE.le.antisymm
zero_smul_filter_nonpos
le_map_iff
Set.image_congr
zero_smul
Set.Nonempty.image_const
NeBot.nonempty_of_mem
zero_mem_zero
zero_smul_filter_nonpos πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instSMulFilter
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
instZero
β€”mem_smul_filter
Set.eq_univ_iff_forall
Set.mem_preimage
zero_smul
univ_mem

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalFilter.HasBasisFilter
Filter.instAdd
Set
Set.add
β€”mapβ‚‚
div πŸ“–mathematicalFilter.HasBasisFilter
Filter.instDiv
Set
Set.div
β€”mapβ‚‚
inv πŸ“–mathematicalFilter.HasBasisFilter
Filter.instInv
InvolutiveInv.toInv
Set
Set.inv
β€”Set.image_inv_eq_inv
map
mul πŸ“–mathematicalFilter.HasBasisFilter
Filter.instMul
Set
Set.mul
β€”mapβ‚‚
neg πŸ“–mathematicalFilter.HasBasisFilter
Filter.instNeg
InvolutiveNeg.toNeg
Set
Set.neg
β€”Set.image_neg_eq_neg
map
smul πŸ“–mathematicalFilter.HasBasisFilter
Filter.instSMul
Set
Set.smul
β€”mapβ‚‚
sub πŸ“–mathematicalFilter.HasBasisFilter
Filter.instSub
Set
Set.sub
β€”mapβ‚‚
vadd πŸ“–mathematicalFilter.HasBasisHVAdd.hVAdd
Filter
instHVAdd
Filter.instVAdd
Set
Set.vadd
β€”mapβ‚‚

Filter.NeBot

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instAdd
β€”mapβ‚‚
div πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instDiv
β€”mapβ‚‚
div_zero_nonneg πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
Filter.instDiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
β€”Filter.le_div_iff
nonempty_of_mem
div_zero
inv πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instInv
β€”map
le_one_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instOne
β€”le_pure_iff
mul πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instMul
β€”mapβ‚‚
mul_zero_nonneg πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instZero
MulZeroClass.toZero
Filter.instMul
MulZeroClass.toMul
β€”Filter.le_mul_iff
nonempty_of_mem
MulZeroClass.mul_zero
neg πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instNeg
β€”map
nonneg_sub πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Filter.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”Filter.nonneg_sub_iff
disjoint_self
Filter.neBot_iff
nonpos_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instZero
β€”le_pure_iff
of_add_left πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_left
of_add_right πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_right
of_div_left πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_left
of_div_right πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_right
of_mul_left πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_left
of_mul_right πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_right
of_smul_filter πŸ“–mathematicalβ€”Filter.NeBotβ€”of_map
of_smul_left πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_left
of_smul_right πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_right
of_sub_left πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_left
of_sub_right πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_right
of_vadd_filter πŸ“–mathematicalβ€”Filter.NeBotβ€”of_map
of_vadd_left πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_left
of_vadd_right πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_right
of_vsub_left πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_left
of_vsub_right πŸ“–mathematicalβ€”Filter.NeBotβ€”of_mapβ‚‚_right
one_le_div πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Filter.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”Filter.neBot_iff
smul πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instSMul
β€”mapβ‚‚
smul_filter πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instSMulFilter
β€”map
smul_zero_nonneg πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instZero
Filter.instSMul
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
β€”Filter.le_smul_iff
nonempty_of_mem
smul_zero
sub πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instSub
β€”mapβ‚‚
vadd πŸ“–mathematicalβ€”Filter.NeBot
HVAdd.hVAdd
Filter
instHVAdd
Filter.instVAdd
β€”mapβ‚‚
vadd_filter πŸ“–mathematicalβ€”Filter.NeBot
HVAdd.hVAdd
Filter
instHVAdd
Filter.instVAddFilter
β€”map
vsub πŸ“–mathematicalβ€”Filter.NeBot
VSub.vsub
Filter
Filter.instVSub
β€”mapβ‚‚
zero_div_nonneg πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
Filter.instDiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
β€”Filter.le_div_iff
nonempty_of_mem
zero_div
zero_mul_nonneg πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instZero
MulZeroClass.toZero
Filter.instMul
MulZeroClass.toMul
β€”Filter.le_mul_iff
nonempty_of_mem
MulZeroClass.zero_mul
zero_smul_nonneg πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instZero
Filter.instSMul
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
β€”Filter.le_smul_iff
nonempty_of_mem
zero_smul

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
add_add πŸ“–mathematicalFilter.Tendsto
DFunLike.coe
Filter
Filter.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
β€”Eq.trans_le
Filter.map_add
add_le_add
Filter.addLeftMono
Filter.addRightMono
div_div πŸ“–mathematicalFilter.Tendsto
DFunLike.coe
Filter
Filter.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
DivisionMonoid.toDivInvMonoid
β€”Eq.trans_le
Filter.map_div
Filter.div_le_div
inv_inv πŸ“–mathematicalFilter.Tendsto
DFunLike.coe
Filter
Filter.instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Eq.trans_le
Filter.map_inv'
Filter.inv_le_inv
mul_mul πŸ“–mathematicalFilter.Tendsto
DFunLike.coe
Filter
Filter.instMul
MulOne.toMul
MulOneClass.toMulOne
β€”Eq.trans_le
Filter.map_mul
mul_le_mul'
Filter.mulLeftMono
Filter.mulRightMono
neg_neg πŸ“–mathematicalFilter.Tendsto
DFunLike.coe
Filter
Filter.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Eq.trans_le
Filter.map_neg'
Filter.neg_le_neg
sub_sub πŸ“–mathematicalFilter.Tendsto
DFunLike.coe
Filter
Filter.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SubtractionMonoid.toSubNegMonoid
β€”Eq.trans_le
Filter.map_sub
Filter.sub_le_sub

Filter.add

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instAdd
β€”Filter.NeBot.add

Filter.div

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instDiv
β€”Filter.NeBot.div

Filter.inv

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instInv
β€”Filter.NeBot.inv

Filter.mul

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instMul
β€”Filter.NeBot.mul

Filter.neg

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instNeg
β€”Filter.NeBot.neg

Filter.smul

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instSMul
β€”Filter.NeBot.smul

Filter.smul_filter

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instSMulFilter
β€”Filter.NeBot.smul_filter

Filter.sub

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
Filter
Filter.instSub
β€”Filter.NeBot.sub

Filter.vadd

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
HVAdd.hVAdd
Filter
instHVAdd
Filter.instVAdd
β€”Filter.NeBot.vadd

Filter.vadd_filter

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
HVAdd.hVAdd
Filter
instHVAdd
Filter.instVAddFilter
β€”Filter.NeBot.vadd_filter

Filter.vsub

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
VSub.vsub
Filter
Filter.instVSub
β€”Filter.NeBot.vsub

IsAddUnit

Theorems

NameKindAssumesProvesValidatesDepends On
filter πŸ“–mathematicalIsAddUnitFilter
Filter.addMonoid
Filter.instPure
β€”map
AddMonoidHom.instAddMonoidHomClass
vadd_tendsto_vadd_iff πŸ“–mathematicalIsAddUnitFilter.Tendsto
HVAdd.hVAdd
instHVAdd
Pi.instVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
Filter
Filter.instVAddFilter
β€”exists_neg'
vadd_vadd
zero_vadd
Filter.Tendsto.comp
Filter.tendsto_map

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
filter πŸ“–mathematicalIsUnitFilter
Filter.monoid
Filter.instPure
β€”map
MonoidHom.instMonoidHomClass
smul_tendsto_smul_iff πŸ“–mathematicalIsUnitFilter.Tendsto
Pi.instSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Filter
Filter.instSMulFilter
β€”exists_left_inv
smul_smul
one_smul
Filter.Tendsto.comp
Filter.tendsto_map

---

← Back to Index