Documentation Verification Report

Prod

πŸ“ Source: Mathlib/Order/Filter/Prod.lean

Statistics

MetricCount
Definitions0
Theoremscurry, diag_of_prod, diag_of_prod_left, diag_of_prod_right, eventually_prod_of_eventually_swap, image_of_prod, prod_inl, prod_inr, prod_mk, trans_prod, prodMap, prodMap, of_curry, uncurry, prod, coprod_of_prod_top_left, coprod_of_prod_top_right, fst, prodMap, prodMap_coprod, prodMk, snd, bot_coprod, bot_coprod_bot, bot_prod, comap_prod, comap_prodMap_prod, compl_diagonal_mem_prod, compl_mem_coprod, coprod_bot, coprod_eq_prod_top_sup_top_prod, coprod_inf_prod_le, coprod_mono, coprod_neBot_iff, coprod_neBot_left, coprod_neBot_right, disjoint_prod, eventually_prod_iff, eventually_prod_principal_iff, eventually_swap_iff, frequently_prod_and, inf_prod, le_prod, le_prod_map_fst_snd, map_const_principal_coprod_map_id_principal, map_fst_prod, map_prod, map_prodMap_const_id_principal_coprod_principal, map_prodMap_coprod_le, map_pure_prod, map_snd_prod, map_swap4_prod, mem_coprod_iff, mem_prod_iff, mem_prod_iff_left, mem_prod_iff_right, mem_prod_principal, mem_prod_top, principal_coprod_principal, instNeBot, prod_assoc, prod_assoc_symm, prod_bot, prod_comap_comap_eq, prod_comm, prod_comm', prod_eq, prod_eq_bot, prod_iInf_left, prod_iInf_right, prod_inf, prod_inf_prod, prod_inj, prod_le_prod, prod_map_left, prod_map_map_eq, prod_map_map_eq', prod_map_right, prod_mem_prod, prod_mem_prod_iff, prod_mono, prod_mono_left, prod_mono_right, prod_neBot, prod_principal_principal, prod_pure, prod_pure_pure, prod_sup, prod_top, pure_prod, sup_prod, tendsto_diag, tendsto_fst, tendsto_prodAssoc, tendsto_prodAssoc_symm, tendsto_prod_iff, tendsto_prod_iff', tendsto_prod_swap, tendsto_snd, tendsto_swap4_prod, top_prod
101
Total101

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
bot_coprod πŸ“–mathematicalβ€”coprod
Bot.bot
Filter
instBot
comap
β€”comap_bot
sup_of_le_right
bot_coprod_bot πŸ“–mathematicalβ€”coprod
Bot.bot
Filter
instBot
β€”coprod_bot
comap_bot
bot_prod πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
Bot.bot
instBot
β€”prod_eq_bot
comap_prod πŸ“–mathematicalβ€”comap
SProd.sprod
Filter
instSProd
instInf
β€”prod_eq_inf
comap_inf
comap_comap
comap_prodMap_prod πŸ“–mathematicalβ€”comap
SProd.sprod
Filter
instSProd
β€”comap_inf
comap_comap
compl_diagonal_mem_prod πŸ“–mathematicalβ€”Set
Filter
instMembership
SProd.sprod
instSProd
Compl.compl
Set.instCompl
Set.diagonal
Disjoint
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
β€”β€”
compl_mem_coprod πŸ“–mathematicalβ€”Set
Filter
instMembership
coprod
Compl.compl
Set.instCompl
Set.image
β€”β€”
coprod_bot πŸ“–mathematicalβ€”coprod
Bot.bot
Filter
instBot
comap
β€”comap_bot
sup_of_le_left
coprod_eq_prod_top_sup_top_prod πŸ“–mathematicalβ€”coprod
Filter
instSup
SProd.sprod
instSProd
Top.top
instTop
β€”prod_top
top_prod
coprod_inf_prod_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInf
coprod
SProd.sprod
instSProd
instSup
β€”coprod_eq_prod_top_sup_top_prod
inf_sup_right
prod_inf_prod
inf_of_le_right
sup_le_sup
prod_mono
inf_le_left
le_rfl
coprod_mono πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
coprodβ€”sup_le_sup
comap_mono
coprod_neBot_iff πŸ“–mathematicalβ€”NeBot
coprod
β€”β€”
coprod_neBot_left πŸ“–mathematicalβ€”NeBot
coprod
β€”coprod_neBot_iff
coprod_neBot_right πŸ“–mathematicalβ€”NeBot
coprod
β€”coprod_neBot_iff
disjoint_prod πŸ“–mathematicalβ€”Disjoint
Filter
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLatticeFilter
SProd.sprod
instSProd
β€”prod_inf_prod
eventually_prod_iff πŸ“–mathematicalβ€”Eventually
SProd.sprod
Filter
instSProd
β€”mem_prod_iff
eventually_prod_principal_iff πŸ“–mathematicalβ€”Eventually
SProd.sprod
Filter
instSProd
principal
β€”eventually_iff
mem_prod_principal
eventually_swap_iff πŸ“–mathematicalβ€”Eventually
SProd.sprod
Filter
instSProd
β€”prod_comm
frequently_prod_and πŸ“–mathematicalβ€”Frequently
SProd.sprod
Filter
instSProd
β€”prod_principal_principal
inf_prod πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instInf
β€”prod_inf_prod
inf_idem
le_prod πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SProd.sprod
instSProd
Tendsto
β€”tendsto_prod_iff'
le_prod_map_fst_snd πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SProd.sprod
instSProd
map
β€”le_inf
le_comap_map
map_const_principal_coprod_map_id_principal πŸ“–mathematicalβ€”coprod
map
principal
Set
Set.instSingletonSet
Set.instUnion
SProd.sprod
Set.instSProd
Set.univ
β€”map_principal
Set.image_singleton
comap_principal
Set.image_congr
sup_principal
Set.prod_univ
Set.univ_prod
map_fst_prod πŸ“–mathematicalβ€”map
SProd.sprod
Filter
instSProd
β€”ext
map_prod πŸ“–mathematicalβ€”map
SProd.sprod
Filter
instSProd
seq
β€”β€”
map_prodMap_const_id_principal_coprod_principal πŸ“–mathematicalβ€”map
coprod
principal
Set
Set.instSingletonSet
SProd.sprod
Set.instSProd
Set.univ
β€”principal_coprod_principal
map_principal
Set.ext
map_prodMap_coprod_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
coprod
β€”β€”
map_pure_prod πŸ“–mathematicalβ€”map
SProd.sprod
Filter
instSProd
instPure
β€”pure_prod
map_snd_prod πŸ“–mathematicalβ€”map
SProd.sprod
Filter
instSProd
β€”prod_comm
map_map
map_fst_prod
map_swap4_prod πŸ“–mathematicalβ€”map
SProd.sprod
Filter
instSProd
β€”map_swap4_eq_comap
comap_inf
comap_comap
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
mem_coprod_iff πŸ“–mathematicalβ€”Set
Filter
instMembership
coprod
Set.instHasSubset
Set.preimage
β€”β€”
mem_prod_iff πŸ“–mathematicalβ€”Set
Filter
instMembership
SProd.sprod
instSProd
Set.instHasSubset
Set.instSProd
β€”mem_inf_of_inter
preimage_mem_comap
mem_prod_iff_left πŸ“–mathematicalβ€”Set
Filter
instMembership
SProd.sprod
instSProd
Eventually
β€”Iff.and
forallβ‚‚_swap
exists_mem_subset_iff
mem_prod_iff_right πŸ“–mathematicalβ€”Set
Filter
instMembership
SProd.sprod
instSProd
Eventually
β€”prod_comm
mem_map
mem_prod_iff_left
mem_prod_principal πŸ“–mathematicalβ€”Set
Filter
instMembership
SProd.sprod
instSProd
principal
setOf
β€”exists_mem_subset_iff
mem_prod_iff
Iff.and
Set.mk_mem_prod
mem_principal_self
mem_prod_top πŸ“–mathematicalβ€”Set
Filter
instMembership
SProd.sprod
instSProd
Top.top
instTop
setOf
β€”principal_univ
mem_prod_principal
principal_coprod_principal πŸ“–mathematicalβ€”coprod
principal
Compl.compl
Set
Set.instCompl
SProd.sprod
Set.instSProd
β€”coprod.eq_1
comap_principal
sup_principal
Set.prod_eq
Set.compl_inter
Set.preimage_compl
compl_compl
prod_assoc πŸ“–mathematicalβ€”map
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.prodAssoc
SProd.sprod
Filter
instSProd
β€”comap_inf
comap_comap
inf_assoc
prod_assoc_symm πŸ“–mathematicalβ€”map
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.prodAssoc
SProd.sprod
Filter
instSProd
β€”map_equiv_symm
comap_inf
comap_comap
inf_assoc
prod_bot πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
Bot.bot
instBot
β€”prod_eq_bot
prod_comap_comap_eq πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
comap
β€”comap_comap
comap_inf
prod_comm πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
map
β€”prod_comm'
map_swap_eq_comap_swap
prod_comm' πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
comap
β€”comap_inf
comap_comap
inf_comm
prod_eq πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
seq
map
β€”map_prod
prod_eq_bot πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
Bot.bot
instBot
β€”β€”
prod_iInf_left πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
iInf
instInfSet
β€”comap_iInf
iInf_inf
prod_iInf_right πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
iInf
instInfSet
β€”comap_iInf
inf_iInf
prod_inf πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instInf
β€”prod_inf_prod
inf_idem
prod_inf_prod πŸ“–mathematicalβ€”Filter
instInf
SProd.sprod
instSProd
β€”inf_left_comm
inf_comm
comap_inf
inf_assoc
prod_inj πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
β€”prod_le_prod
Eq.le
LE.le.antisymm
neBot_of_le
Eq.ge
prod_le_prod πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SProd.sprod
instSProd
β€”Tendsto.mono_left
tendsto_fst
map_fst_prod
tendsto_snd
map_snd_prod
prod_mono
prod_map_left πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
map
β€”prod_map_map_eq'
map_id
prod_map_map_eq πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
map
β€”le_antisymm
mem_prod_iff
mem_of_superset
prod_mem_prod
image_mem_map
Set.prod_image_image_eq
Set.image_subset_iff
Tendsto.prodMk
Tendsto.comp
tendsto_map
tendsto_fst
tendsto_snd
prod_map_map_eq' πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
map
β€”prod_map_map_eq
prod_map_right πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
map
β€”prod_map_map_eq'
map_id
prod_mem_prod πŸ“–mathematicalSet
Filter
instMembership
SProd.sprod
instSProd
Set.instSProd
β€”inter_mem_inf
preimage_mem_comap
prod_mem_prod_iff πŸ“–mathematicalβ€”Set
Filter
instMembership
SProd.sprod
instSProd
Set.instSProd
β€”mem_prod_iff
Set.prod_subset_prod_iff
mem_of_superset
Set.Nonempty.ne_empty
nonempty_of_mem
prod_mem_prod
prod_mono πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SProd.sprod
instSProd
β€”inf_le_inf
comap_mono
prod_mono_left πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SProd.sprod
instSProd
β€”prod_mono
Eq.le
prod_mono_right πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SProd.sprod
instSProd
β€”prod_mono
Eq.le
prod_neBot πŸ“–mathematicalβ€”NeBot
SProd.sprod
Filter
instSProd
β€”β€”
prod_principal_principal πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
principal
Set
Set.instSProd
β€”comap_principal
inf_principal
prod_pure πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instPure
map
β€”prod_eq
seq_pure
map_map
prod_pure_pure πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instPure
β€”prod_pure
prod_sup πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instSup
β€”comap_sup
inf_sup_left
prod_top πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
Top.top
instTop
comap
β€”prod_eq_inf
comap_top
inf_top_eq
pure_prod πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instPure
map
β€”prod_eq
map_pure
pure_seq_eq_map
sup_prod πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
instSup
β€”comap_sup
inf_sup_right
tendsto_diag πŸ“–mathematicalβ€”Tendsto
SProd.sprod
Filter
instSProd
β€”tendsto_iff_eventually
Eventually.diag_of_prod
tendsto_fst πŸ“–mathematicalβ€”Tendsto
SProd.sprod
Filter
instSProd
β€”tendsto_inf_left
tendsto_comap
tendsto_prodAssoc πŸ“–mathematicalβ€”Tendsto
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.prodAssoc
SProd.sprod
Filter
instSProd
β€”Eq.le
prod_assoc
tendsto_prodAssoc_symm πŸ“–mathematicalβ€”Tendsto
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.prodAssoc
SProd.sprod
Filter
instSProd
β€”Eq.le
prod_assoc_symm
tendsto_prod_iff πŸ“–mathematicalβ€”Tendsto
SProd.sprod
Filter
instSProd
Set
instMembership
Set.instMembership
β€”β€”
tendsto_prod_iff' πŸ“–mathematicalβ€”Tendsto
SProd.sprod
Filter
instSProd
β€”β€”
tendsto_prod_swap πŸ“–mathematicalβ€”Tendsto
SProd.sprod
Filter
instSProd
β€”Tendsto.prodMk
tendsto_snd
tendsto_fst
tendsto_snd πŸ“–mathematicalβ€”Tendsto
SProd.sprod
Filter
instSProd
β€”tendsto_inf_right
tendsto_comap
tendsto_swap4_prod πŸ“–mathematicalβ€”Tendsto
SProd.sprod
Filter
instSProd
β€”Eq.le
map_swap4_prod
top_prod πŸ“–mathematicalβ€”SProd.sprod
Filter
instSProd
Top.top
instTop
comap
β€”prod_eq_inf
comap_top
top_inf_eq

Filter.Eventually

Theorems

NameKindAssumesProvesValidatesDepends On
curry πŸ“–β€”Filter.Eventually
SProd.sprod
Filter
Filter.instSProd
β€”β€”Filter.eventually_prod_iff
mono
diag_of_prod πŸ“–β€”Filter.Eventually
SProd.sprod
Filter
Filter.instSProd
β€”β€”image_of_prod
Filter.tendsto_id
diag_of_prod_left πŸ“–β€”Filter.Eventually
SProd.sprod
Filter
Filter.instSProd
β€”β€”Filter.eventually_prod_iff
mono
diag_of_prod
diag_of_prod_right πŸ“–β€”Filter.Eventually
SProd.sprod
Filter
Filter.instSProd
β€”β€”Filter.eventually_prod_iff
mono
diag_of_prod
eventually_prod_of_eventually_swap πŸ“–mathematicalFilter.EventuallySProd.sprod
Filter
Filter.instSProd
β€”Filter.eventually_prod_iff
exists
and
image_of_prod πŸ“–β€”Filter.Tendsto
Filter.Eventually
SProd.sprod
Filter
Filter.instSProd
β€”β€”Filter.eventually_prod_iff
Filter.mp_mem
Filter.Tendsto.eventually
Filter.univ_mem'
prod_inl πŸ“–mathematicalFilter.EventuallySProd.sprod
Filter
Filter.instSProd
β€”Filter.Tendsto.eventually
Filter.tendsto_fst
prod_inr πŸ“–mathematicalFilter.EventuallySProd.sprod
Filter
Filter.instSProd
β€”Filter.Tendsto.eventually
Filter.tendsto_snd
prod_mk πŸ“–mathematicalFilter.EventuallySProd.sprod
Filter
Filter.instSProd
β€”and
prod_inl
prod_inr
trans_prod πŸ“–β€”Filter.Eventually
SProd.sprod
Filter
Filter.instSProd
β€”β€”eventually_prod_of_eventually_swap
curry
Filter.eventually_swap_iff

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
prodMap πŸ“–mathematicalFilter.EventuallyEqSProd.sprod
Filter
Filter.instSProd
β€”Filter.Eventually.mono

Filter.EventuallyLE

Theorems

NameKindAssumesProvesValidatesDepends On
prodMap πŸ“–mathematicalFilter.EventuallyLEProd.instLE_mathlib
SProd.sprod
Filter
Filter.instSProd
β€”β€”

Filter.Frequently

Theorems

NameKindAssumesProvesValidatesDepends On
of_curry πŸ“–mathematicalFilter.FrequentlySProd.sprod
Filter
Filter.instSProd
β€”uncurry
uncurry πŸ“–mathematicalFilter.FrequentlySProd.sprod
Filter
Filter.instSProd
β€”Mathlib.Tactic.Contrapose.contrapose₁
Filter.Eventually.curry

Filter.NeBot

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalβ€”Filter.NeBot
SProd.sprod
Filter
Filter.instSProd
β€”Filter.prod_neBot

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
coprod_of_prod_top_left πŸ“–mathematicalFilter.Tendsto
SProd.sprod
Filter
Filter.instSProd
Filter.principal
Compl.compl
Set
Set.instCompl
Top.top
Filter.instTop
Filter.coprodβ€”Filter.coprod_eq_prod_top_sup_top_prod
coprod_of_prod_top_right πŸ“–mathematicalFilter.Tendsto
SProd.sprod
Filter
Filter.instSProd
Filter.principal
Compl.compl
Set
Set.instCompl
Top.top
Filter.instTop
Filter.coprodβ€”Filter.coprod_eq_prod_top_sup_top_prod
fst πŸ“–β€”Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
β€”β€”comp
Filter.tendsto_fst
prodMap πŸ“–mathematicalFilter.TendstoSProd.sprod
Filter
Filter.instSProd
β€”eq_1
Prod.map_def
Filter.prod_map_map_eq
Filter.prod_mono
prodMap_coprod πŸ“–mathematicalFilter.TendstoFilter.coprodβ€”LE.le.trans
Filter.map_prodMap_coprod_le
Filter.coprod_mono
prodMk πŸ“–mathematicalFilter.TendstoSProd.sprod
Filter
Filter.instSProd
β€”Filter.tendsto_inf
Filter.tendsto_comap_iff
snd πŸ“–β€”Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
β€”β€”comp
Filter.tendsto_snd

Filter.prod

Theorems

NameKindAssumesProvesValidatesDepends On
instNeBot πŸ“–mathematicalβ€”Filter.NeBot
SProd.sprod
Filter
Filter.instSProd
β€”Filter.NeBot.prod

---

← Back to Index