Documentation Verification Report

Ring

πŸ“ Source: Mathlib/Order/Filter/Ring.lean

Statistics

MetricCount
Definitions0
Theoremsadd_le_add, mul_le_mul, mul_le_mul', mul_nonneg, instIsOrderedRing, eventually_sub_nonneg
6
Total6

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_sub_nonneg πŸ“–mathematicalβ€”EventuallyLE
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”eventually_congr
Eventually.of_forall
sub_nonneg

Filter.EventuallyLE

Theorems

NameKindAssumesProvesValidatesDepends On
add_le_add πŸ“–mathematicalFilter.EventuallyLE
Preorder.toLE
Pi.instAddβ€”Filter.mp_mem
Filter.univ_mem'
add_le_add
mul_le_mul πŸ“–mathematicalFilter.EventuallyLE
Preorder.toLE
Pi.instZero
MulZeroClass.toZero
Pi.instMul
MulZeroClass.toMul
β€”Filter.mp_mem
Filter.univ_mem'
mul_le_mul
mul_le_mul' πŸ“–mathematicalFilter.EventuallyLE
Preorder.toLE
Pi.instMulβ€”Filter.mp_mem
Filter.univ_mem'
mul_le_mul'
mul_nonneg πŸ“–mathematicalFilter.EventuallyLE
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Filter.mp_mem
Filter.univ_mem'
mul_nonneg
IsOrderedRing.toPosMulMono

Filter.Germ

Theorems

NameKindAssumesProvesValidatesDepends On
instIsOrderedRing πŸ“–mathematicalβ€”IsOrderedRing
Filter.Germ
instSemiring
instPartialOrder
β€”instIsOrderedAddMonoid
IsOrderedRing.toIsOrderedAddMonoid
const_le
zero_le_one
IsOrderedRing.toZeroLEOneClass
inductionOn
inductionOnβ‚‚
Filter.Eventually.mp
Filter.Eventually.mono
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono

---

← Back to Index