Documentation Verification Report

Tuple

📁 Source: Mathlib/Order/Fin/Tuple.lean

Statistics

MetricCount
DefinitionscastLEOrderIso, consOrderIso, insertNthOrderIso, snocOrderIso, finTwoArrowIso, piFinTwoIso, finSuccAboveOrderIso
7
TheoremsvecCons, castLEOrderIso_apply, castLEOrderIso_symm_apply, consOrderIso_apply, consOrderIso_symm_apply, consOrderIso_toEquiv, insertNthOrderIso_apply, insertNthOrderIso_last, insertNthOrderIso_symm_apply, insertNthOrderIso_toEquiv, insertNthOrderIso_zero, insertNth_mem_Icc, pi_lex_lt_cons_cons, preimage_insertNth_Icc_of_mem, preimage_insertNth_Icc_of_notMem, snocOrderIso_apply, snocOrderIso_symm_apply, snocOrderIso_toEquiv, vecCons, vecCons, vecCons, antitone_vecCons, antitone_vecEmpty, finSuccAboveOrderIso_apply, finSuccAboveOrderIso_symm_apply_last, finSuccAboveOrderIso_symm_apply_ne_last, liftFun_vecCons, monotone_vecCons, monotone_vecEmpty, strictAnti_vecCons, strictAnti_vecEmpty, strictMono_vecCons, strictMono_vecEmpty
33
Total40

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
vecCons 📖mathematicalAntitone
PartialOrder.toPreorder
Fin.instPartialOrder
Preorder.toLE
Matrix.vecConsantitone_vecCons

Fin

Definitions

NameCategoryTheorems
castLEOrderIso 📖CompOp
2 mathmath: castLEOrderIso_symm_apply, castLEOrderIso_apply
consOrderIso 📖CompOp
4 mathmath: consOrderIso_apply, consOrderIso_symm_apply, insertNthOrderIso_zero, consOrderIso_toEquiv
insertNthOrderIso 📖CompOp
5 mathmath: insertNthOrderIso_symm_apply, insertNthOrderIso_toEquiv, insertNthOrderIso_zero, insertNthOrderIso_apply, insertNthOrderIso_last
snocOrderIso 📖CompOp
4 mathmath: snocOrderIso_apply, snocOrderIso_symm_apply, snocOrderIso_toEquiv, insertNthOrderIso_last

Theorems

NameKindAssumesProvesValidatesDepends On
castLEOrderIso_apply 📖mathematicalDFunLike.coe
RelIso
RelIso.instFunLike
castLEOrderIso
castLEOrderIso_symm_apply 📖mathematicalDFunLike.coe
RelIso
RelIso.instFunLike
RelIso.symm
castLEOrderIso
consOrderIso_apply 📖mathematicalDFunLike.coe
RelIso
Prod.instLE_mathlib
Pi.hasLe
RelIso.instFunLike
consOrderIso
cons
consOrderIso_symm_apply 📖mathematicalDFunLike.coe
RelIso
Pi.hasLe
Prod.instLE_mathlib
RelIso.instFunLike
RelIso.symm
consOrderIso
tail
consOrderIso_toEquiv 📖mathematicalRelIso.toEquiv
Prod.instLE_mathlib
Pi.hasLe
consOrderIso
consEquiv
insertNthOrderIso_apply 📖mathematicalDFunLike.coe
RelIso
Prod.instLE_mathlib
Pi.hasLe
succAbove
RelIso.instFunLike
insertNthOrderIso
insertNth
insertNthOrderIso_last 📖mathematicalinsertNthOrderIso
snocOrderIso
OrderIso.ext
insertNth_last'
insertNthOrderIso_symm_apply 📖mathematicalDFunLike.coe
RelIso
Pi.hasLe
Prod.instLE_mathlib
succAbove
RelIso.instFunLike
RelIso.symm
insertNthOrderIso
removeNth
insertNthOrderIso_toEquiv 📖mathematicalRelIso.toEquiv
Prod.instLE_mathlib
Pi.hasLe
succAbove
insertNthOrderIso
insertNthEquiv
insertNthOrderIso_zero 📖mathematicalinsertNthOrderIso
consOrderIso
OrderIso.ext
insertNthEquiv_zero
insertNth_mem_Icc 📖mathematicalSet
Set.instMembership
Set.Icc
Pi.preorder
insertNth
succAbove
pi_lex_lt_cons_cons 📖mathematicalPi.Lex
cons
cons_succ
cons_zero
instIsEmptyFalse
preimage_insertNth_Icc_of_mem 📖mathematicalSet
Set.instMembership
Set.Icc
Set.preimage
insertNth
Pi.preorder
succAbove
Set.ext
preimage_insertNth_Icc_of_notMem 📖mathematicalSet
Set.instMembership
Set.Icc
Set.preimage
insertNth
Pi.preorder
Set.instEmptyCollection
Set.ext
snocOrderIso_apply 📖mathematicalDFunLike.coe
RelIso
Prod.instLE_mathlib
Pi.hasLe
RelIso.instFunLike
snocOrderIso
snoc
snocOrderIso_symm_apply 📖mathematicalDFunLike.coe
RelIso
Pi.hasLe
Prod.instLE_mathlib
RelIso.instFunLike
RelIso.symm
snocOrderIso
init
snocOrderIso_toEquiv 📖mathematicalRelIso.toEquiv
Prod.instLE_mathlib
Pi.hasLe
snocOrderIso
snocEquiv

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
vecCons 📖mathematicalMonotone
PartialOrder.toPreorder
Fin.instPartialOrder
Preorder.toLE
Matrix.vecConsmonotone_vecCons

OrderIso

Definitions

NameCategoryTheorems
finTwoArrowIso 📖CompOp
piFinTwoIso 📖CompOp

StrictAnti

Theorems

NameKindAssumesProvesValidatesDepends On
vecCons 📖mathematicalStrictAnti
PartialOrder.toPreorder
Fin.instPartialOrder
Preorder.toLT
Matrix.vecConsstrictAnti_vecCons

StrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
vecCons 📖mathematicalStrictMono
PartialOrder.toPreorder
Fin.instPartialOrder
Preorder.toLT
Matrix.vecConsstrictMono_vecCons

(root)

Definitions

NameCategoryTheorems
finSuccAboveOrderIso 📖CompOp
2 mathmath: finSuccAboveOrderIso_symm_apply_last, finSuccAboveOrderIso_apply

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_vecCons 📖mathematicalAntitone
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Preorder.toLE
monotone_vecCons
antitone_vecEmpty 📖mathematicalAntitone
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Matrix.vecEmpty
le_rfl
finSuccAboveOrderIso_apply 📖mathematicalDFunLike.coe
OrderIso
instFunLikeOrderIso
finSuccAboveOrderIso
Fin.succAbove
Fin.succAbove_ne
finSuccAboveOrderIso_symm_apply_last 📖mathematicalDFunLike.coe
OrderIso
instFunLikeOrderIso
OrderIso.symm
finSuccAboveOrderIso
Equiv.optionSubtype_apply_symm_apply
Fin.succAbove_last
finSuccAboveOrderIso_symm_apply_ne_last 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
finSuccAboveEquiv
Fin.predAbove
Equiv.optionSubtype_apply_symm_apply
finSuccEquiv'_ne_last_apply
liftFun_vecCons 📖mathematicalRelator.LiftFun
Matrix.vecCons
Fin.liftFun_iff_succ
Matrix.cons_val_succ
monotone_vecCons 📖mathematicalMonotone
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Preorder.toLE
liftFun_vecCons
instIsTransLe
monotone_vecEmpty 📖mathematicalMonotone
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Matrix.vecEmpty
le_refl
strictAnti_vecCons 📖mathematicalStrictAnti
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Preorder.toLT
liftFun_vecCons
instIsTransGt
strictAnti_vecEmpty 📖mathematicalStrictAnti
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Matrix.vecEmpty
irrefl
instIrreflLt
strictMono_vecCons 📖mathematicalStrictMono
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Preorder.toLT
liftFun_vecCons
instIsTransLt
strictMono_vecEmpty 📖mathematicalStrictMono
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Matrix.vecEmpty
irrefl
instIrreflLt

---

← Back to Index