Documentation Verification Report

FixedPoints

πŸ“ Source: Mathlib/Order/FixedPoints.lean

Statistics

MetricCount
Definitionsgfp, lfp, nextFixed, prevFixed, completeLattice, instBoundedOrderElemFixedPointsCoeOrderHom, instSemilatticeInfElemFixedPointsCoeOrderHom, instSemilatticeSupElemFixedPointsCoeOrderHom
8
Theoremsgfp_const_inf_le, gfp_gfp, gfp_induction, gfp_le, gfp_le_map, isFixedPt_gfp, isFixedPt_lfp, isGreatest_gfp, isGreatest_gfp_le, isLeast_lfp, isLeast_lfp_le, le_gfp, le_lfp, le_map_sSup_subset_fixedPoints, le_map_sup_fixedPoints, le_nextFixed, le_prevFixed, le_prevFixed_iff, lfp_induction, lfp_le, lfp_le_fixed, lfp_le_gfp, lfp_le_map, lfp_lfp, map_gfp, map_gfp_comp, map_inf_fixedPoints_le, map_le_gfp, map_le_lfp, map_lfp, map_lfp_comp, map_sInf_subset_fixedPoints_le, nextFixed_le, nextFixed_le_iff, prevFixed_le, gfp_eq_sInf_iterate, lfp_eq_sSup_iterate
37
Total45

OrderHom

Definitions

NameCategoryTheorems
gfp πŸ“–CompOp
14 mathmath: OrdinalApprox.gfp_mem_range_gfpApprox, lfp_le_gfp, gfp_const_inf_le, gfp_le, OrdinalApprox.gfpApprox_ord_eq_gfp, gfp_gfp, map_gfp, isGreatest_gfp_le, fixedPoints.gfp_eq_sInf_iterate, isGreatest_gfp, gfp_induction, isFixedPt_gfp, le_gfp, map_gfp_comp
lfp πŸ“–CompOp
14 mathmath: lfp_induction, lfp_le_gfp, map_lfp, isLeast_lfp, OrdinalApprox.lfpApprox_ord_eq_lfp, lfp_lfp, le_lfp, isFixedPt_lfp, fixedPoints.lfp_eq_sSup_iterate, OrdinalApprox.lfp_mem_range_lfpApprox, lfp_le, isLeast_lfp_le, map_lfp_comp, lfp_le_fixed
nextFixed πŸ“–CompOp
3 mathmath: nextFixed_le, nextFixed_le_iff, le_nextFixed
prevFixed πŸ“–CompOp
3 mathmath: le_prevFixed, le_prevFixed_iff, prevFixed_le

Theorems

NameKindAssumesProvesValidatesDepends On
gfp_const_inf_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instPreorder
instFunLike
gfp
instMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
const
β€”gfp_le
LE.le.trans
inf_le_left
gfp_gfp πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instPreorder
instFunLike
gfp
comp
onDiag
β€”lfp_lfp
gfp_induction πŸ“–mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
InfSet.sInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
instPreorder
gfp
β€”lfp_induction
gfp_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instPreorder
instFunLike
gfp
β€”sSup_le
gfp_le_map πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instPreorder
instFunLike
gfp
β€”β€”map_le_lfp
isFixedPt_gfp πŸ“–mathematicalβ€”Function.IsFixedPt
DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
instPreorder
gfp
β€”isFixedPt_lfp
isFixedPt_lfp πŸ“–mathematicalβ€”Function.IsFixedPt
DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
instPreorder
lfp
β€”map_lfp
isGreatest_gfp πŸ“–mathematicalβ€”IsGreatest
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
Function.fixedPoints
DFunLike.coe
OrderHom
instFunLike
instPreorder
gfp
β€”isLeast_lfp
isGreatest_gfp_le πŸ“–mathematicalβ€”IsGreatest
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
setOf
DFunLike.coe
OrderHom
instFunLike
instPreorder
gfp
β€”isLeast_lfp_le
isLeast_lfp πŸ“–mathematicalβ€”IsLeast
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
Function.fixedPoints
DFunLike.coe
OrderHom
instFunLike
instPreorder
lfp
β€”isFixedPt_lfp
lfp_le_fixed
isLeast_lfp_le πŸ“–mathematicalβ€”IsLeast
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
setOf
DFunLike.coe
OrderHom
instFunLike
instPreorder
lfp
β€”Eq.le
map_lfp
lfp_le
le_gfp πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instFunLike
instPreorder
gfp
β€”le_sSup
le_lfp πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instPreorder
instFunLike
lfp
β€”le_sInf
le_map_sSup_subset_fixedPoints πŸ“–mathematicalSet
Set.instHasSubset
Function.fixedPoints
DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
Preorder.toLE
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”sSup_le
mono
le_sSup
le_map_sup_fixedPoints πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Set
Set.instMembership
Function.fixedPoints
DFunLike.coe
OrderHom
instFunLike
β€”Monotone.le_map_sup
mono
le_nextFixed πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instFunLike
Set
Set.instMembership
Function.fixedPoints
nextFixed
β€”prevFixed_le
le_prevFixed πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instFunLike
Set
Set.instMembership
Function.fixedPoints
Set.Elem
prevFixed
β€”le_prevFixed_iff
le_prevFixed_iff πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instFunLike
Set.Elem
Function.fixedPoints
Set
Set.instMembership
prevFixed
β€”nextFixed_le_iff
lfp_induction πŸ“–mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instPreorder
lfp
β€”sSup_le
map_le_lfp
LE.le.antisymm
lfp_le
le_sSup
lfp_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instFunLike
instPreorder
lfp
β€”sInf_le
lfp_le_fixed πŸ“–mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
Preorder.toLE
instPreorder
lfp
β€”lfp_le
Eq.le
lfp_le_gfp πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instPreorder
instFunLike
lfp
gfp
β€”lfp_le_fixed
isFixedPt_gfp
lfp_le_map πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instPreorder
instFunLike
lfp
β€”β€”map_lfp
mono
lfp_lfp πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instPreorder
instFunLike
lfp
comp
onDiag
β€”LE.le.antisymm
lfp_le
Eq.le
map_lfp
map_gfp πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
instPreorder
gfp
β€”map_lfp
map_gfp_comp πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
instPreorder
gfp
comp
β€”map_lfp_comp
map_inf_fixedPoints_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instFunLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
Set
Set.instMembership
Function.fixedPoints
β€”le_map_sup_fixedPoints
map_le_gfp πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instPreorder
instFunLike
gfp
β€”β€”lfp_le_map
map_le_lfp πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instPreorder
instFunLike
lfp
β€”β€”le_lfp
LE.le.trans
mono
le_sInf_iff
map_lfp πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
instPreorder
lfp
β€”map_le_lfp
le_rfl
LE.le.antisymm
lfp_le
mono
map_lfp_comp πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
instPreorder
lfp
comp
β€”le_antisymm
mono
lfp_le_fixed
map_lfp
lfp_le
Eq.le
map_sInf_subset_fixedPoints_le πŸ“–mathematicalSet
Set.instHasSubset
Function.fixedPoints
DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
instFunLike
Preorder.toLE
InfSet.sInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”le_sInf
mono
sInf_le
nextFixed_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instFunLike
Set
Set.instMembership
Function.fixedPoints
Set.Elem
nextFixed
β€”Subtype.coe_le_coe
lfp_le
sup_le
Eq.le
nextFixed_le_iff πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instFunLike
Set.Elem
Function.fixedPoints
Set
Set.instMembership
nextFixed
β€”LE.le.trans
le_nextFixed
nextFixed_le
prevFixed_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
instFunLike
Set
Set.instMembership
Function.fixedPoints
prevFixed
β€”gfp_const_inf_le

fixedPoints

Definitions

NameCategoryTheorems
completeLattice πŸ“–CompOpβ€”
instBoundedOrderElemFixedPointsCoeOrderHom πŸ“–CompOpβ€”
instSemilatticeInfElemFixedPointsCoeOrderHom πŸ“–CompOpβ€”
instSemilatticeSupElemFixedPointsCoeOrderHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
gfp_eq_sInf_iterate πŸ“–mathematicalOmegaCompletePartialOrder.Ο‰ScottContinuous
OrderDual
CompleteLattice.instOmegaCompletePartialOrder
OrderDual.instCompleteLattice
DFunLike.coe
OrderHom
OrderDual.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
OrderHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderHom.dual
OrderHom.instPreorder
OrderHom.gfp
iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Nat.iterate
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”lfp_eq_sSup_iterate
lfp_eq_sSup_iterate πŸ“–mathematicalOmegaCompletePartialOrder.Ο‰ScottContinuous
CompleteLattice.instOmegaCompletePartialOrder
DFunLike.coe
OrderHom
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
OrderHom.instFunLike
OrderHom.instPreorder
OrderHom.lfp
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Nat.iterate
Bot.bot
OrderBot.toBot
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”le_antisymm
OrderHom.lfp_le_fixed
Function.mem_fixedPoints
OmegaCompletePartialOrder.fixedPoints.Ο‰Sup_iterate_mem_fixedPoint
OmegaCompletePartialOrder.Ο‰ScottContinuous.map_Ο‰Sup_of_orderHom
bot_le
OrderHom.le_lfp
OmegaCompletePartialOrder.fixedPoints.Ο‰Sup_iterate_le_prefixedPoint

---

← Back to Index