Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Order/GaloisConnection/Basic.lean

Statistics

MetricCount
DefinitionsliftBoundedOrder, liftCompleteLattice, liftLattice, liftOrderBot, liftSemilatticeInf, liftSemilatticeSup, liftBoundedOrder, liftCompleteLattice, liftLattice, liftOrderTop, liftSemilatticeInf, liftSemilatticeSup, toGaloisCoinsertion, toGaloisInsertion, giUnbotDBot, gci_Ici_sInf, gi_sSup_Iic
17
TheoremsisGLB_of_l_image, isLUB_of_l_image, u_biSup_l, u_biSup_of_lu_eq_self, u_iInf_l, u_iSup_l, u_iSup_of_lu_eq_self, u_inf_l, u_sInf_l_image, u_sSup_l_image, u_sup_l, bddAbove_l_image, bddBelow_u_image, compl, isGLB_l, isGLB_u_image, isGreatest_u, isLUB_l_image, isLUB_u, isLeast_l, l_iSup, l_iSupβ‚‚, l_sSup, l_sup, lowerBounds_u_image, u_iInf, u_iInfβ‚‚, u_inf, u_sInf, upperBounds_l_image, isGLB_of_u_image, isLUB_of_u_image, l_biInf_of_ul_eq_self, l_biInf_u, l_biSup_u, l_iInf_of_ul_eq_self, l_iInf_u, l_iSup_u, l_inf_u, l_sInf_u_image, l_sSup_u_image, l_sup_u, galoisConnection_mul_div, bddAbove_image, bddAbove_preimage, bddBelow_image, bddBelow_preimage, to_galoisConnection, gc_Ici_sInf, gc_sSup_Iic, isGLB_image2_of_isGLB_isGLB, isGLB_image2_of_isGLB_isLUB, isGLB_image2_of_isLUB_isGLB, isGLB_image2_of_isLUB_isLUB, isLUB_image2_of_isGLB_isGLB, isLUB_image2_of_isGLB_isLUB, isLUB_image2_of_isLUB_isGLB, isLUB_image2_of_isLUB_isLUB, sInf_image2_eq_sInf_sInf, sInf_image2_eq_sInf_sSup, sInf_image2_eq_sSup_sInf, sInf_image2_eq_sSup_sSup, sSup_image2_eq_sInf_sInf, sSup_image2_eq_sInf_sSup, sSup_image2_eq_sSup_sInf, sSup_image2_eq_sSup_sSup
66
Total83

GaloisCoinsertion

Definitions

NameCategoryTheorems
liftBoundedOrder πŸ“–CompOpβ€”
liftCompleteLattice πŸ“–CompOpβ€”
liftLattice πŸ“–CompOpβ€”
liftOrderBot πŸ“–CompOpβ€”
liftSemilatticeInf πŸ“–CompOpβ€”
liftSemilatticeSup πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isGLB_of_l_image πŸ“–β€”IsGLB
Preorder.toLE
Set.image
β€”β€”GaloisInsertion.isLUB_of_u_image
isLUB_of_l_image πŸ“–β€”IsLUB
Preorder.toLE
Set.image
β€”β€”GaloisInsertion.isGLB_of_u_image
u_biSup_l πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”GaloisInsertion.l_biInf_u
u_biSup_of_lu_eq_self πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”GaloisInsertion.l_biInf_of_ul_eq_self
u_iInf_l πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”GaloisInsertion.l_iSup_u
u_iSup_l πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”GaloisInsertion.l_iInf_u
u_iSup_of_lu_eq_self πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”GaloisInsertion.l_iInf_of_ul_eq_self
u_inf_l πŸ“–mathematicalβ€”SemilatticeInf.toMinβ€”GaloisInsertion.l_sup_u
u_sInf_l_image πŸ“–mathematicalβ€”InfSet.sInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Set.image
β€”GaloisInsertion.l_sSup_u_image
u_sSup_l_image πŸ“–mathematicalβ€”SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image
β€”GaloisInsertion.l_sInf_u_image
u_sup_l πŸ“–mathematicalβ€”SemilatticeSup.toMaxβ€”GaloisInsertion.l_inf_u

GaloisConnection

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove_l_image πŸ“–mathematicalGaloisConnectionBddAbove
Preorder.toLE
Set.image
β€”upperBounds_l_image
Monotone.map_bddAbove
monotone_l
bddBelow_u_image πŸ“–mathematicalGaloisConnectionBddBelow
Preorder.toLE
Set.image
β€”bddAbove_l_image
dual
compl πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Compl.compl
BooleanAlgebra.toCompl
β€”le_compl_iff_le_compl
compl_le_iff_compl_le
isGLB_l πŸ“–mathematicalGaloisConnectionIsGLB
Preorder.toLE
setOf
β€”IsLeast.isGLB
isLeast_l
isGLB_u_image πŸ“–mathematicalGaloisConnection
IsGLB
Preorder.toLE
Set.imageβ€”isLUB_l_image
dual
isGreatest_u πŸ“–mathematicalGaloisConnectionIsGreatest
Preorder.toLE
setOf
β€”isLeast_l
dual
isLUB_l_image πŸ“–mathematicalGaloisConnection
IsLUB
Preorder.toLE
Set.imageβ€”Monotone.mem_upperBounds_image
monotone_l
l_le
upperBounds_l_image
isLUB_u πŸ“–mathematicalGaloisConnectionIsLUB
Preorder.toLE
setOf
β€”IsGreatest.isLUB
isGreatest_u
isLeast_l πŸ“–mathematicalGaloisConnectionIsLeast
Preorder.toLE
setOf
β€”le_u_l
l_le
l_iSup πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”IsLUB.iSup_eq
Set.range_comp
sSup_range
isLUB_l_image
isLUB_sSup
l_iSupβ‚‚ πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”l_iSup
l_sSup πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
Set
Set.instMembership
β€”sSup_eq_iSup
l_iSup
l_sup πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMaxβ€”IsLUB.unique
isLUB_l_image
isLUB_pair
Set.image_pair
lowerBounds_u_image πŸ“–mathematicalGaloisConnectionlowerBounds
Preorder.toLE
Set.image
Set.preimage
β€”upperBounds_l_image
dual
u_iInf πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iInf
CompleteSemilatticeInf.toInfSet
β€”l_iSup
dual
u_iInfβ‚‚ πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
iInf
CompleteSemilatticeInf.toInfSet
β€”l_iSupβ‚‚
dual
u_inf πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMinβ€”l_sup
dual
u_sInf πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
InfSet.sInf
CompleteSemilatticeInf.toInfSet
iInf
Set
Set.instMembership
β€”l_sSup
dual
upperBounds_l_image πŸ“–mathematicalGaloisConnectionupperBounds
Preorder.toLE
Set.image
Set.preimage
β€”Set.ext

GaloisInsertion

Definitions

NameCategoryTheorems
liftBoundedOrder πŸ“–CompOpβ€”
liftCompleteLattice πŸ“–CompOpβ€”
liftLattice πŸ“–CompOpβ€”
liftOrderTop πŸ“–CompOpβ€”
liftSemilatticeInf πŸ“–CompOpβ€”
liftSemilatticeSup πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isGLB_of_u_image πŸ“–β€”IsGLB
Preorder.toLE
Set.image
β€”β€”GaloisConnection.l_le
gc
Set.mem_image_of_mem
LE.le.trans
le_l_u
GaloisConnection.monotone_l
Monotone.mem_lowerBounds_image
GaloisConnection.monotone_u
isLUB_of_u_image πŸ“–β€”IsLUB
Preorder.toLE
Set.image
β€”β€”LE.le.trans
le_l_u
GaloisConnection.monotone_l
gc
Set.mem_image_of_mem
GaloisConnection.l_le
Monotone.mem_upperBounds_image
GaloisConnection.monotone_u
l_biInf_of_ul_eq_self πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”iInf_subtype'
l_iInf_of_ul_eq_self
l_biInf_u πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”iInf_subtype'
l_iInf_u
l_biSup_u πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup_subtype'
l_iSup_u
l_iInf_of_ul_eq_self πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”l_iInf_u
l_iInf_u πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”GaloisConnection.u_iInf
gc
l_u_eq
l_iSup_u πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”GaloisConnection.l_iSup
gc
l_u_eq
l_inf_u πŸ“–mathematicalβ€”SemilatticeInf.toMinβ€”GaloisConnection.u_inf
gc
l_u_eq
l_sInf_u_image πŸ“–mathematicalβ€”InfSet.sInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Set.image
β€”sInf_image
l_biInf_u
sInf_eq_iInf
l_sSup_u_image πŸ“–mathematicalβ€”SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image
β€”sSup_image
l_biSup_u
sSup_eq_iSup
l_sup_u πŸ“–mathematicalβ€”SemilatticeSup.toMaxβ€”GaloisConnection.l_sup
gc
l_u_eq

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
galoisConnection_mul_div πŸ“–mathematicalβ€”GaloisConnection
instPreorder
β€”β€”

OrderIso

Definitions

NameCategoryTheorems
toGaloisCoinsertion πŸ“–CompOpβ€”
toGaloisInsertion πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove_image πŸ“–mathematicalβ€”BddAbove
Preorder.toLE
Set.image
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”GaloisConnection.bddAbove_l_image
to_galoisConnection
bddAbove_preimage πŸ“–mathematicalβ€”BddAbove
Preorder.toLE
Set.preimage
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”bddAbove_image
image_preimage
bddBelow_image πŸ“–mathematicalβ€”BddBelow
Preorder.toLE
Set.image
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”bddAbove_image
bddBelow_preimage πŸ“–mathematicalβ€”BddBelow
Preorder.toLE
Set.preimage
DFunLike.coe
OrderIso
instFunLikeOrderIso
β€”bddBelow_image
image_preimage
to_galoisConnection πŸ“–mathematicalβ€”GaloisConnection
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
symm
β€”RelIso.rel_symm_apply

WithBot

Definitions

NameCategoryTheorems
giUnbotDBot πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
gci_Ici_sInf πŸ“–CompOpβ€”
gi_sSup_Iic πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
gc_Ici_sInf πŸ“–mathematicalβ€”GaloisConnection
OrderDual
Set
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
OrderDual.instPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Set.Ici
InfSet.sInf
CompleteSemilatticeInf.toInfSet
OrderDual.ofDual
β€”le_sInf_iff
gc_sSup_Iic πŸ“–mathematicalβ€”GaloisConnection
Set
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
CompleteSemilatticeSup.toPartialOrder
SupSet.sSup
CompleteSemilatticeSup.toSupSet
Set.Iic
β€”sSup_le_iff
isGLB_image2_of_isGLB_isGLB πŸ“–mathematicalGaloisConnection
Function.swap
IsGLB
Preorder.toLE
Set.image2β€”isLUB_image2_of_isLUB_isLUB
GaloisConnection.dual
isGLB_image2_of_isGLB_isLUB πŸ“–mathematicalGaloisConnection
Function.swap
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
OrderDual.ofDual
IsGLB
Preorder.toLE
IsLUB
Set.image2β€”isGLB_image2_of_isGLB_isGLB
isGLB_image2_of_isLUB_isGLB πŸ“–mathematicalGaloisConnection
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Function.swap
OrderDual.ofDual
IsLUB
Preorder.toLE
IsGLB
Set.image2β€”isGLB_image2_of_isGLB_isGLB
isGLB_image2_of_isLUB_isLUB πŸ“–mathematicalGaloisConnection
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Function.swap
OrderDual.ofDual
IsLUB
Preorder.toLE
IsGLB
Set.image2
β€”isGLB_image2_of_isGLB_isGLB
isLUB_image2_of_isGLB_isGLB πŸ“–mathematicalGaloisConnection
OrderDual
OrderDual.instPreorder
Function.swap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
IsGLB
Preorder.toLE
IsLUB
Set.image2
β€”isLUB_image2_of_isLUB_isLUB
isLUB_image2_of_isGLB_isLUB πŸ“–mathematicalGaloisConnection
OrderDual
OrderDual.instPreorder
Function.swap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
IsGLB
Preorder.toLE
IsLUB
Set.image2β€”isLUB_image2_of_isLUB_isLUB
isLUB_image2_of_isLUB_isGLB πŸ“–mathematicalGaloisConnection
Function.swap
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
IsLUB
Preorder.toLE
IsGLB
Set.image2β€”isLUB_image2_of_isLUB_isLUB
isLUB_image2_of_isLUB_isLUB πŸ“–mathematicalGaloisConnection
Function.swap
IsLUB
Preorder.toLE
Set.image2β€”GaloisConnection.le_iff_le
sInf_image2_eq_sInf_sInf πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Function.swap
InfSet.sInf
CompleteSemilatticeInf.toInfSet
Set.image2
β€”IsGLB.sInf_eq
isGLB_image2_of_isGLB_isGLB
isGLB_sInf
sInf_image2_eq_sInf_sSup πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Function.swap
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
OrderDual.ofDual
InfSet.sInf
CompleteSemilatticeInf.toInfSet
Set.image2
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”sInf_image2_eq_sInf_sInf
sInf_image2_eq_sSup_sInf πŸ“–mathematicalGaloisConnection
OrderDual
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Function.swap
OrderDual.ofDual
InfSet.sInf
CompleteSemilatticeInf.toInfSet
Set.image2
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”sInf_image2_eq_sInf_sInf
sInf_image2_eq_sSup_sSup πŸ“–mathematicalGaloisConnection
OrderDual
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Function.swap
OrderDual.ofDual
InfSet.sInf
CompleteSemilatticeInf.toInfSet
Set.image2
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”sInf_image2_eq_sInf_sInf
sSup_image2_eq_sInf_sInf πŸ“–mathematicalGaloisConnection
OrderDual
OrderDual.instPreorder
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Function.swap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image2
InfSet.sInf
CompleteSemilatticeInf.toInfSet
β€”sSup_image2_eq_sSup_sSup
sSup_image2_eq_sInf_sSup πŸ“–mathematicalGaloisConnection
OrderDual
OrderDual.instPreorder
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Function.swap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image2
InfSet.sInf
CompleteSemilatticeInf.toInfSet
β€”sSup_image2_eq_sSup_sSup
sSup_image2_eq_sSup_sInf πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Function.swap
OrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toDual
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image2
InfSet.sInf
CompleteSemilatticeInf.toInfSet
β€”sSup_image2_eq_sSup_sSup
sSup_image2_eq_sSup_sSup πŸ“–mathematicalGaloisConnection
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Function.swap
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image2
β€”IsLUB.sSup_eq
isLUB_image2_of_isLUB_isLUB
isLUB_sSup

---

← Back to Index