Documentation Verification Report

Defs

📁 Source: Mathlib/Order/GaloisConnection/Defs.lean

Statistics

MetricCount
DefinitionsGaloisCoinsertion, choice, dual, monotoneIntro, ofDual, liftOrderBot, liftOrderTop, toGaloisCoinsertion, toGaloisInsertion, GaloisInsertion, choice, dual, monotoneIntro, ofDual
14
Theoremschoice_eq, gc, l_injective, l_le_l_iff, strictMono_l, u_bot, u_l_eq, u_l_le, u_l_leftInverse, u_surjective, compose, dfun, dual, exists_eq_l, exists_eq_u, id, l_bot, l_comm_iff_u_comm, l_comm_of_u_comm, l_eq, l_eq_bot, l_le, l_u_bot, l_u_l_eq_l, l_u_l_eq_l', l_u_le, l_u_le_trans, l_unique, le_iff_le, le_iff_le', le_u, le_u_l, le_u_l_trans, lt_iff_lt, lt_iff_lt', monotone_intro, monotone_l, monotone_u, u_comm_of_l_comm, u_eq, u_eq_top, u_l_top, u_l_u_eq_u, u_l_u_eq_u', u_top, u_unique, choice_eq, gc, l_surjective, l_top, l_u_eq, le_l_u, leftInverse_l_u, strictMono_u, u_injective, u_le_u_iff
56
Total70

GaloisCoinsertion

Definitions

NameCategoryTheorems
choice 📖CompOp
1 mathmath: choice_eq
dual 📖CompOp
monotoneIntro 📖CompOp
ofDual 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
choice_eq 📖mathematicalPreorder.toLEchoice
gc 📖mathematicalGaloisConnection
l_injective 📖GaloisInsertion.u_injective
l_le_l_iff 📖mathematicalPreorder.toLEGaloisInsertion.u_le_u_iff
strictMono_l 📖mathematicalStrictMonoGaloisInsertion.strictMono_u
u_bot 📖mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
GaloisInsertion.l_top
u_l_eq 📖GaloisInsertion.l_u_eq
u_l_le 📖mathematicalPreorder.toLE
u_l_leftInverse 📖u_l_eq
u_surjective 📖GaloisInsertion.l_surjective

GaloisConnection

Definitions

NameCategoryTheorems
liftOrderBot 📖CompOp
liftOrderTop 📖CompOp
toGaloisCoinsertion 📖CompOp
toGaloisInsertion 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
compose 📖GaloisConnection
dfun 📖mathematicalGaloisConnectionPi.preorder
dual 📖mathematicalGaloisConnectionOrderDual
OrderDual.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
OrderDual.ofDual
exists_eq_l 📖GaloisConnection
PartialOrder.toPreorder
l_u_l_eq_l
exists_eq_u 📖GaloisConnection
PartialOrder.toPreorder
u_l_u_eq_u
id 📖mathematicalGaloisConnection
l_bot 📖mathematicalGaloisConnection
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
l_eq_bot
bot_le
l_comm_iff_u_comm 📖GaloisConnection
PartialOrder.toPreorder
l_comm_of_u_comm
u_comm_of_l_comm
l_comm_of_u_comm 📖GaloisConnection
PartialOrder.toPreorder
l_unique
compose
l_eq 📖mathematicalGaloisConnection
PartialOrder.toPreorder
Preorder.toLELE.le.antisymm'
le_u_l
le_rfl
l_eq_bot 📖mathematicalGaloisConnection
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
le_bot_iff
le_iff_le'
l_le 📖GaloisConnection
Preorder.toLE
l_u_bot 📖mathematicalGaloisConnection
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
l_eq_bot
le_rfl
l_u_l_eq_l 📖GaloisConnection
PartialOrder.toPreorder
LE.le.antisymm'
monotone_l
le_u_l
l_u_le
l_u_l_eq_l' 📖GaloisConnection
PartialOrder.toPreorder
l_u_l_eq_l
l_u_le 📖mathematicalGaloisConnectionPreorder.toLEl_le
le_rfl
l_u_le_trans 📖GaloisConnection
Preorder.toLE
LE.le.trans'
monotone_l
le_u
l_unique 📖GaloisConnection
PartialOrder.toPreorder
ge_antisymm
l_le
le_u_l
le_iff_le 📖mathematicalGaloisConnectionPreorder.toLE
le_iff_le' 📖mathematicalGaloisConnectionPreorder.toLE
le_u 📖GaloisConnection
Preorder.toLE
le_u_l 📖mathematicalGaloisConnectionPreorder.toLEle_u
le_rfl
le_u_l_trans 📖GaloisConnection
Preorder.toLE
LE.le.trans
monotone_u
l_le
lt_iff_lt 📖mathematicalGaloisConnection
PartialOrder.toPreorder
LinearOrder.toPartialOrder
Preorder.toLTlt_iff_lt_of_le_iff_le
lt_iff_lt' 📖mathematicalGaloisConnection
PartialOrder.toPreorder
LinearOrder.toPartialOrder
Preorder.toLTlt_iff_lt_of_le_iff_le
monotone_intro 📖mathematicalMonotone
Preorder.toLE
GaloisConnectionLE.le.trans
monotone_l 📖mathematicalGaloisConnectionMonotonel_le
LE.le.trans'
le_u_l
monotone_u 📖mathematicalGaloisConnectionMonotonele_u
LE.le.trans
l_u_le
u_comm_of_l_comm 📖GaloisConnection
PartialOrder.toPreorder
u_unique
compose
u_eq 📖mathematicalGaloisConnection
PartialOrder.toPreorder
Preorder.toLELE.le.antisymm
l_u_le
le_rfl
u_eq_top 📖mathematicalGaloisConnection
PartialOrder.toPreorder
Top.top
OrderTop.toTop
Preorder.toLE
top_le_iff
le_iff_le
u_l_top 📖mathematicalGaloisConnection
PartialOrder.toPreorder
Top.top
OrderTop.toTop
Preorder.toLE
u_eq_top
le_rfl
u_l_u_eq_u 📖GaloisConnection
PartialOrder.toPreorder
LE.le.antisymm
monotone_u
l_u_le
le_u_l
u_l_u_eq_u' 📖GaloisConnection
PartialOrder.toPreorder
u_l_u_eq_u
u_top 📖mathematicalGaloisConnection
PartialOrder.toPreorder
Top.top
OrderTop.toTop
Preorder.toLE
u_eq_top
le_top
u_unique 📖GaloisConnection
PartialOrder.toPreorder
le_antisymm
le_u
l_u_le

GaloisInsertion

Definitions

NameCategoryTheorems
choice 📖CompOp
2 mathmath: choice_eq, ContinuousMap.idealOpensGI_choice
dual 📖CompOp
monotoneIntro 📖CompOp
ofDual 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
choice_eq 📖mathematicalPreorder.toLEchoice
gc 📖mathematicalGaloisConnection
l_surjective 📖Function.LeftInverse.surjective
leftInverse_l_u
l_top 📖mathematicalTop.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
top_unique
LE.le.trans
le_l_u
GaloisConnection.monotone_l
gc
le_top
l_u_eq 📖LE.le.antisymm
GaloisConnection.l_u_le
gc
le_l_u
le_l_u 📖mathematicalPreorder.toLE
leftInverse_l_u 📖l_u_eq
strictMono_u 📖mathematicalStrictMonostrictMono_of_le_iff_le
u_le_u_iff
u_injective 📖leftInverse_l_u
u_le_u_iff 📖mathematicalPreorder.toLELE.le.trans
le_l_u
GaloisConnection.l_le
gc
GaloisConnection.monotone_u

(root)

Definitions

NameCategoryTheorems
GaloisCoinsertion 📖CompData
GaloisInsertion 📖CompData

---

← Back to Index