Documentation Verification Report

Height

πŸ“ Source: Mathlib/Order/Height.lean

Statistics

MetricCount
DefinitionschainHeight
1
TheoremschainHeight_coe_univ, chainHeight_coe_univ_le, chainHeight_coe_univ_lt, chainHeight_empty, chainHeight_eq_iSup, chainHeight_eq_of_relEmbedding, chainHeight_eq_of_relIso, chainHeight_eq_top_iff, chainHeight_eq_zero_iff, chainHeight_flip, chainHeight_le_encard, chainHeight_mono, chainHeight_ne_top_of_finite, chainHeight_of_isEmpty, encard_eq_chainHeight_of_isChain, encard_le_chainHeight_of_isChain, exists_eq_chainHeight_of_chainHeight_ne_top, exists_eq_chainHeight_of_finite, exists_isChain_of_le_chainHeight, finite_of_chainHeight_ne_top, not_isChain_of_chainHeight_lt_encard, one_le_chainHeight_iff
22
Total23

Set

Definitions

NameCategoryTheorems
chainHeight πŸ“–CompOp
18 mathmath: chainHeight_eq_of_relEmbedding, chainHeight_le_encard, chainHeight_mono, exists_eq_chainHeight_of_chainHeight_ne_top, chainHeight_eq_of_relIso, chainHeight_coe_univ_lt, one_le_chainHeight_iff, chainHeight_empty, chainHeight_coe_univ_le, encard_le_chainHeight_of_isChain, chainHeight_flip, encard_eq_chainHeight_of_isChain, chainHeight_coe_univ, chainHeight_of_isEmpty, chainHeight_eq_iSup, chainHeight_eq_zero_iff, exists_eq_chainHeight_of_finite, chainHeight_eq_top_iff

Theorems

NameKindAssumesProvesValidatesDepends On
chainHeight_coe_univ πŸ“–mathematicalβ€”chainHeight
Elem
univ
Set
instMembership
β€”chainHeight_eq_of_relEmbedding
image_congr
image_univ
Subtype.range_coe_subtype
chainHeight_coe_univ_le πŸ“–mathematicalβ€”chainHeight
Elem
univ
Set
instMembership
β€”chainHeight_coe_univ
chainHeight_coe_univ_lt πŸ“–mathematicalβ€”chainHeight
Elem
univ
Set
instMembership
β€”chainHeight_coe_univ
chainHeight_empty πŸ“–mathematicalβ€”chainHeight
Set
instEmptyCollection
ENat
instZeroENat
β€”chainHeight_eq_zero_iff
chainHeight_eq_iSup πŸ“–mathematicalβ€”chainHeight
iSup
ENat
Set
instHasSubset
IsChain
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
encard
β€”β€”
chainHeight_eq_of_relEmbedding πŸ“–mathematicalβ€”chainHeight
image
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
β€”ENat.eq_of_forall_natCast_le_iff
exists_isChain_of_le_chainHeight
encard_preimage_of_injective_subset_range
RelEmbedding.injective
encard_le_chainHeight_of_isChain
preimage_subset
Function.Injective.injOn
IsChain.preimage_relEmbedding
Function.Injective.encard_image
IsChain.image_relEmbedding
chainHeight_eq_of_relIso πŸ“–mathematicalβ€”chainHeight
image
DFunLike.coe
RelIso
RelIso.instFunLike
β€”chainHeight_eq_of_relEmbedding
chainHeight_eq_top_iff πŸ“–mathematicalβ€”chainHeight
Top.top
ENat
instTopENat
Set
instHasSubset
encard
ENat.instNatCast
IsChain
β€”exists_isChain_of_le_chainHeight
LE.le.trans_eq
le_top
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
WithTop.ne_top_iff_exists
not_isChain_of_chainHeight_lt_encard
ENat.some_eq_coe
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
chainHeight_eq_zero_iff πŸ“–mathematicalβ€”chainHeight
ENat
instZeroENat
Set
instEmptyCollection
β€”ext
chainHeight_flip πŸ“–mathematicalβ€”chainHeightβ€”ENat.eq_of_forall_natCast_le_iff
exists_isChain_of_le_chainHeight
encard_le_chainHeight_of_isChain
chainHeight_le_encard πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chainHeight
encard
β€”β€”
chainHeight_mono πŸ“–mathematicalSet
instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chainHeight
β€”ENat.forall_natCast_le_iff_le
exists_isChain_of_le_chainHeight
encard_le_chainHeight_of_isChain
HasSubset.Subset.trans
instIsTransSubset
chainHeight_ne_top_of_finite πŸ“–β€”β€”β€”β€”LT.lt.ne_top
lt_of_le_of_lt
chainHeight_le_encard
lt_top_iff_ne_top
encard_ne_top_iff
chainHeight_of_isEmpty πŸ“–mathematicalβ€”chainHeight
ENat
instZeroENat
β€”chainHeight_eq_zero_iff
Unique.instSubsingleton
encard_eq_chainHeight_of_isChain πŸ“–mathematicalIsChainencard
chainHeight
β€”le_antisymm
encard_le_chainHeight_of_isChain
Subset.rfl
chainHeight_le_encard
encard_le_chainHeight_of_isChain πŸ“–mathematicalSet
instHasSubset
IsChain
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
encard
chainHeight
β€”le_iSup_iff
exists_eq_chainHeight_of_chainHeight_ne_top πŸ“–mathematicalβ€”Set
instHasSubset
encard
chainHeight
IsChain
β€”ENat.exists_eq_iSup_of_lt_top
chainHeight_eq_iSup
lt_top_iff_ne_top
exists_eq_chainHeight_of_finite πŸ“–mathematicalβ€”Set
instHasSubset
encard
chainHeight
IsChain
β€”exists_eq_chainHeight_of_chainHeight_ne_top
chainHeight_ne_top_of_finite
exists_isChain_of_le_chainHeight πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
chainHeight
Set
instHasSubset
encard
IsChain
β€”encard_empty
Nat.cast_zero
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
iSup_lt_iff
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENat.le_sub_one_of_lt
exists_subset_encard_eq
HasSubset.Subset.trans
instIsTransSubset
IsChain.mono
finite_of_chainHeight_ne_top πŸ“–mathematicalIsChainFiniteβ€”encard_ne_top_iff
ne_top_of_le_ne_top
encard_le_chainHeight_of_isChain
subset_refl
instReflSubset
not_isChain_of_chainHeight_lt_encard πŸ“–mathematicalSet
instHasSubset
ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chainHeight
encard
IsChainβ€”lt_self_iff_false
lt_imp_lt_of_le_of_le
le_refl
encard_le_chainHeight_of_isChain
one_le_chainHeight_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
chainHeight
Nonempty
β€”chainHeight_empty
NeZero.one

---

← Back to Index