π Source: Mathlib/Order/Height.lean
chainHeight
chainHeight_coe_univ
chainHeight_coe_univ_le
chainHeight_coe_univ_lt
chainHeight_empty
chainHeight_eq_iSup
chainHeight_eq_of_relEmbedding
chainHeight_eq_of_relIso
chainHeight_eq_top_iff
chainHeight_eq_zero_iff
chainHeight_flip
chainHeight_le_encard
chainHeight_mono
chainHeight_ne_top_of_finite
chainHeight_of_isEmpty
encard_eq_chainHeight_of_isChain
encard_le_chainHeight_of_isChain
exists_eq_chainHeight_of_chainHeight_ne_top
exists_eq_chainHeight_of_finite
exists_isChain_of_le_chainHeight
finite_of_chainHeight_ne_top
not_isChain_of_chainHeight_lt_encard
one_le_chainHeight_iff
Elem
univ
Set
instMembership
image_congr
image_univ
Subtype.range_coe_subtype
instEmptyCollection
ENat
instZeroENat
iSup
instHasSubset
IsChain
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
encard
image
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
ENat.eq_of_forall_natCast_le_iff
encard_preimage_of_injective_subset_range
RelEmbedding.injective
preimage_subset
Function.Injective.injOn
IsChain.preimage_relEmbedding
Function.Injective.encard_image
IsChain.image_relEmbedding
RelIso
RelIso.instFunLike
Top.top
instTopENat
ENat.instNatCast
LE.le.trans_eq
le_top
Mathlib.Tactic.Contrapose.contraposeβ
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
WithTop.ne_top_iff_exists
ENat.some_eq_coe
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
ext
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENat.forall_natCast_le_iff_le
HasSubset.Subset.trans
instIsTransSubset
LT.lt.ne_top
lt_of_le_of_lt
lt_top_iff_ne_top
encard_ne_top_iff
Unique.instSubsingleton
le_antisymm
Subset.rfl
le_iSup_iff
ENat.exists_eq_iSup_of_lt_top
encard_empty
Nat.cast_zero
iSup_lt_iff
Nat.cast_one
ENat.le_sub_one_of_lt
exists_subset_encard_eq
IsChain.mono
Finite
ne_top_of_le_ne_top
subset_refl
instReflSubset
Preorder.toLT
lt_self_iff_false
lt_imp_lt_of_le_of_le
le_refl
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nonempty
NeZero.one
---
β Back to Index