toLattice π | CompOp | 574 mathmath: Set.pairwiseDisjoint_range_iff, BooleanSubalgebra.mem_toSublattice, map_symmDiff', BoolAlg.coe_id, Set.pairwise_disjoint_Ioc_zpow, codisjoint_iff_compl_le_right, Pi.symmDiff_def, Set.pairwise_disjoint_Ioo_add_zsmul, Set.inter_symmDiff_distrib_left, Set.functorToTypes_obj, compl_symmDiff_self, Set.Finite.inf_of_right, CategoryTheory.Limits.Types.binaryCofan_isColimit_iff, BoolRing.hasForgetToBoolAlg_forgetβ_obj_coe, Sym2.disjoint_diagSet_fromRel, Set.disjoint_compl_left_iff_subset, ofBoolRing_sub, bihimp_left_involutive, AlgebraicGeometry.Scheme.support_nilradical, le_sdiff_right, BiheytingHom.map_sdiff', Set.pairwise_disjoint_Ico_zsmul, WithBot.orderIsoPUnitSumLex_symm_inl, disjoint_sdiff_self_right, bihimp_bihimp_cancel_right, bihimp_eq_left, symmDiff_eq', Set.pairwise_disjoint_Ioo_mul_zpow, sup_inf_inf_compl, BooleanSubalgebra.map_map, sdiff_le_iff', inf_symmDiff_distrib_right, Set.sdiff_singleton_wcovBy, Set.image_symmDiff, bot_sdiff, sdiff_symmDiff, codisjoint_bihimp_sup, Pi.symmDiff_apply, BoolAlg.hasForgetToBoolRing_forgetβ_obj_carrier, toBoolRing_inf, compl_inf, sup_sdiff_right_self, symmDiff_compl_self, Finset.disjoint_coe, Finset.pairwiseDisjoint_coe, Set.disjoint_of_subset_iff_left_eq_empty, inf_himp_bihimp, SetRel.core_mono, sdiff_sdiff_sup_sdiff', BoolAlg.ext_iff, Coheyting.boundary_top, symmDiff_symmDiff_self', Finset.compl_inf, hnot_le_iff_codisjoint_left, Set.toFinset_symmDiff, WithBot.orderIsoPUnitSumLex_symm_inr, Order.Ideal.IsProper.notMem_or_compl_notMem, Coheyting.boundary_le_hnot, symmDiff_top, sup_inf_inf_sdiff, Set.isCompl_range_some_none, isLeast_sdiff, Coheyting.hnot_boundary, hnot_symmDiff_self, Set.indicator_symmDiff, symmDiff_right_comm, pairwise_disjoint_fiber, Finset.compl_sup, bihimp_right_surjective, Coheyting.hnot_eq_top_iff_exists_boundary, hnot_hnot_le, ofBoolAlg_inf, Set.symmDiff_def, Set.covBy_iff_exists_sdiff_singleton, instWellFoundedLTSubtypeSetFinite, disjoint_compl_right_iff, symmDiff_top', SetRel.prod_comp_prod, codisjoint_iff_compl_le_left, Set.disjoint_image_left, Booleanisation.comp_lt_comp, Set.sdiff_singleton_covBy, BooleanSubalgebra.inf_mem, bihimp_himp_left, symmDiff_left_inj, Types.monoOverEquivalenceSet_inverse_map, disjoint_symmDiff_inf, BoolAlg.hasForgetToBoolRing_forgetβ_map, top_symmDiff, symmDiff_assoc, codisjoint_hnot_right, Finpartition.mem_avoid, sdiff_sup, Fin.top_eq_last, BiheytingHom.toFun_eq_coe_aux, Set.pairwise_disjoint_Ioc_zsmul, isCoatom_compl, sdiff_symmDiff', bihimp_eq_right, Set.subset_compl_iff_disjoint_right, BooleanSubalgebra.subtype_comp_inclusion, boolRingCatEquivBoolAlg_functor, le_hnot_inf_hnot, sdiff_inf_self_left, sdiff_le_hnot, Set.mem_symmDiff, BooleanSubalgebra.sup_mem, BoolAlg.ofHom_comp, compl_symmDiff, BooleanSubalgebra.mem_comap, SetRel.image_core_gc, Set.disjoint_sdiff_inter, ofBoolRing_add, Fin.rev_top, CoheytingHom.toFun_eq_coe_aux, Set.pairwise_disjoint_Ioo_add_intCast, Fintype.sup_disjointed, liminf_eq_top, Set.covBy_insert, disjoint_sdiff_comm, symmDiff_fst, compl_lt_self, BooleanSubalgebra.bot_mem', HasSubset.Subset.disjoint_compl_right, sdiff_le_iff_left, Fin.top_eq_zero, disjoint_of_sSup_disjoint, bot_symmDiff, himp_bihimp_left, sdiff_self, sdiff_lt_left, bihimp_left_comm, symmDiff_comm, UV.sup_sdiff_mem_of_mem_compression_of_notMem, BooleanSubalgebra.coe_map, Finset.inf_himp_right, SimpleGraph.edgeSet_eq_iff, symmDiff_sdiff_right, Set.pairwise_disjoint_Ioc_add_zsmul, BoolAlg.hom_id, WithTop.orderIsoSumLexPUnit_toLex, Set.disjoint_powerset_insert, symmDiff_left_involutive, Set.disjoint_toFinset, bihimp_left_surjective, bihimp_le_iff_left, symmDiff_sdiff_left, symmDiff_symmDiff_right, Set.pairwise_disjoint_Ioc_mul_zpow, Set.pairwise_disjoint_Ico_mul_zpow, BoolAlg.hasForgetToHeytAlg_forgetβ_map, WithTop.orderIsoSumLexPUnit_symm_inl, Coheyting.hnot_hnot_sup_boundary, Set.offDiag_mono, bihimp_le_iff_right, MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion, BooleanSubalgebra.mk_inf_mk, SimpleGraph.disjoint_edgeSet, iSup_eq_top, bihimp_bihimp_self, UV.le_of_mem_compression_of_notMem, CoheytingHomClass.map_top, symmDiff_right_inj, FinBoolAlg.forgetToFinPartOrdFaithful, sup_eq_sdiff_sup_sdiff_sup_inf, compl_image_latticeClosure, toBoolAlg_add, Coheyting.boundary_sup_le, Set.union_symmDiff_subset, CoheytingHomClass.toLatticeHomClass, sup_hnot_self, disjointed_add_one, BooleanSubalgebra.subtype_injective, ofBoolAlg_sup, Set.pairwise_disjoint_Ico_add_intCast, symmDiff_snd, BooleanSubalgebra.apply_coe_mem_map, Set.subset_diff, disjointed_le_id, Booleanisation.lift_le_lift, Int.isCompl_even_odd, hnot_top, himp_le, le_sup_sdiff, partialSups_disjointed, sdiff_sdiff_right, compl_lt_compl_iff_lt, sdiff_sdiff_sdiff_le_sdiff, Order.Ideal.isPrime_iff_mem_or_compl_mem, sdiff_inf_right_comm, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_top_iff, toBoolAlg_add_add_mul, Set.Finite.toFinset_symmDiff, disjoint_disjointed_of_lt, Finset.diffs_compls_eq_infs, BiheytingHomClass.toLatticeHomClass, Set.nsmul_right_monotone, inf_sdiff_sup_left, compl_image_latticeClosure_eq_of_compl_image_eq_self, CoheytingHom.map_top', sup_sdiff_right, symmDiff_eq_right, symmDiff_eq, symmDiff_eq_sup_sdiff_inf, Set.mulIndicator_symmDiff, hnot_bot, WithTop.orderIsoSumLexPUnit_top, OrderIso.compl_symm_apply, le_sdiff, ofBoolRing_le_ofBoolRing_iff, ofBoolAlg_mul_ofBoolAlg_eq_left_iff, BooleanSubalgebra.mk_sup_mk, himp_le_left, Set.disjoint_prod, Finset.inf_sdiff_right, Coheyting.boundary_inf, bihimp_eq, BooleanSubalgebra.coe_inclusion, BooleanSubalgebra.comap_id, gc_sdiff_sup, Set.indicator_eq_zero', bihimp_right_inj, bihimp_right_comm, Set.disjoint_image_iff, Set.disjoint_pi, Set.indicator_eq_zero, symmDiff_sup_inf, TopologicalSpace.Clopens.exists_finset_eq_sup_prod, symmDiff_self, le_symmDiff_iff_right, Set.empty_covBy_singleton, symmDiff_triangle, sdiff_sdiff_self, disjoint_of_sSup_disjoint_of_le_of_le, bihimp_iff_iff, BooleanSubalgebra.latticeClosure_subset_closure, sdiff_le_inf_hnot, BooleanAlgebra.le_iff_atom_le_imp, ofBoolAlg_symmDiff, symmDiff_left_surjective, BiheytingHom.toFun_eq_coe, Set.pow_right_monotone, FinBoolAlg.hasForgetToFinPartOrd_forgetβ_obj_carrier, Set.apply_indicator_symmDiff, BooleanSubalgebra.infClosed, Coheyting.inf_hnot_self, sdiff_sdiff_sup_sdiff, BooleanSubalgebra.closure_latticeClosure, RingHom.asBoolAlg_id, inf_symmDiff_distrib_left, compl_le_self, Set.disjoint_compl_right_iff_subset, BoolAlg.hom_comp, Set.pairwise_disjoint_Ioo_zpow, symmDiff_isAssociative, Set.Finite.inf_of_left, gc_Ici_sInf, Set.disjoint_image_image, Set.symmDiff_subset_union, BooleanSubalgebra.mem_map_of_mem, Booleanisation.lift_sdiff_comp, eq_compl_iff_isCompl, Function.disjoint_mulSupport_iff, SimpleGraph.compl_neighborSet_disjoint, BooleanSubalgebra.val_inf, Finset.sup_sdiff_right, RingHom.asBoolAlg_comp, hnot_inf_distrib, CoheytingHom.map_sdiff', Coheyting.boundary_inf_le, codisjoint_hnot_left, sdiff_eq_bot_iff, sdiff_le, BooleanSubalgebra.subtype_apply, Set.zero_mem_neg_add_iff, sdiff_sup_self, Set.pairwise_disjoint_Ioc_intCast, BooleanSubalgebra.inclusion_injective, Set.subset_compl_iff_disjoint_left, Types.monoOverEquivalenceSet_functor_map, symmDiff_isCommutative, BoolAlg.ofHom_id, sdiff_sdiff, BoolAlg.dual_map, disjoint_compl_left_iff, sdiff_inf_self_right, Set.pairwise_disjoint_Ioo_zsmul, CategoryTheory.Limits.Types.isPushout_of_bicartSq, Pi.support_single_disjoint, HasSubset.Subset.disjoint_compl_left, Coheyting.boundary_hnot_le, boolRingCatEquivBoolAlg_inverse, compl_symmDiff_compl, Coheyting.boundary_le_boundary_sup_sup_boundary_inf_left, SimpleGraph.fromEdgeSet_disjoint, Finset.compls_sups, BoolAlg.coe_comp, SetRel.image_mono, disjointed_le, Function.Injective.image_strictMono, BoundedLatticeHom.asBoolRing_apply, inf_sdiff_assoc, Set.disjoint_image_right, Types.monoOverEquivalenceSet_functor_obj, BooleanSubalgebra.val_sup, BoolRing.hasForgetToBoolAlg_forgetβ_map, himp_bihimp_right, Function.mulSupport_disjoint_iff, Booleanisation.liftLatticeHom_injective, BoolAlg.hom_inv_apply, MeasureTheory.preVariation.sum_le, Set.pairwise_disjoint_Ioc_add_intCast, sdiff_sdiff_le, bihimp_right_involutive, FinBoolAlg.hasForgetToFinPartOrd_forgetβ_obj_isFintype, Set.Finite.symmDiff_congr, MeasureTheory.preVariation.sum_le_preVariationFun_iUnion', Set.inter_symmDiff_distrib_right, Booleanisation.lift_lt_lift, sdiff_inf, bihimp_eq_inf, SetRel.preimage_mono, BooleanSubalgebra.mem_map, Finset.compls_infs, Finset.coe_symmDiff, le_symmDiff_sup_left, Set.mulIndicator_eq_one', Function.support_disjoint_iff, Set.isCompl_range_inl_range_inr, Coheyting.boundary_le, sup_sdiff_left_self, sup_sdiff_self_left, Set.one_notMem_inv_mul_iff, Fin.cast_top, symmDiff_sdiff, Set.preimage_eq_empty_iff, symmDiff_sdiff_eq_sup, symmDiff_le_sup, BoolAlg.comp_apply, PUnit.top_eq, isLeast_hnot, TopologicalSpace.Clopens.surjective_finset_sup_prod, WithBot.orderIsoPUnitSumLex_toLex, ofBoolRing_mul, sdiff_sdiff_right', symmDiff_symmDiff_left, symmDiff_symmDiff_cancel_left, Set.disjoint_image_inl_image_inr, symmDiff_eq_bot, compl_antitone, Set.disjoint_sdiff_left, compl_strictAnti, gc_sSup_Iic, sdiff_compl, Set.pairwise_disjoint_Ico_zpow, inf_sdiff_sup_right, BoundedLatticeHom.asBoolRing_id, Booleanisation.comp_sup_comp, BiheytingHom.map_himp', Booleanisation.comp_sdiff_lift, Set.disjoint_preimage_iff, finBoolAlg_dual_comp_forget_to_finBddDistLat, Set.apply_mulIndicator_symmDiff, Finset.infs_compls_eq_diffs, TopologicalSpace.Clopens.coe_finset_sup, Finset.sup_sdiff_left, le_symmDiff_iff_left, SimpleGraph.IsCompleteBetween.disjoint, Set.disjoint_sdiff_right, symmDiff_le_iff, codisjoint_hnot_hnot_left_iff, UV.disjoint_of_mem_compression_of_notMem, inf_sup_symmDiff, symmDiff_eq_Xor', Booleanisation.lift_lt_comp, sdiff_le_comm, symmDiff_right_surjective, Set.zero_notMem_sub_iff, MeasureTheory.preVariation.exists_Finpartition_sum_ge, Set.one_notMem_div_iff, bihimp_left_inj, bihimp_left_injective, BoundedLatticeHom.asBoolRing_comp, MeasureTheory.preVariation.exists_Finpartition_sum_gt, Fintype.exists_disjointed_le, sdiff_sdiff_left, OrderIso.asBoolAlgAsBoolRing_apply, disjointed_succ, sSup_eq_top, Set.Finite.disjoint_toFinset, Finset.compls_infs_eq_diffs, bihimp_bihimp_cancel_left, inf_sdiff, sdiff_inf_distrib, Set.pairwiseDisjoint_range_singleton, le_symmDiff_sup_right, symmDiff_symmDiff_right', Fin.rev_zero_eq_top, Set.Finite.symmDiff, Set.disjoint_diagonal_offDiag, SetRel.gc_leftDual_rightDual, sdiff_eq_self_iff_disjoint, BooleanSubalgebra.mem_carrier, disjointed_apply, BoolAlg.hasForgetToHeytAlg_forgetβ_obj_coe, Booleanisation.comp_inf_comp, compl_le_compl_iff_le, Set.symmDiff_eq_empty, OrderIso.compl_apply, sup_sdiff, CoheytingHom.toFun_eq_coe, symmDiff_hnot_self, inf_sdiff_distrib_right, Set.mulIndicator_eq_one, compl_le_hnot, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_top, symmDiff_left_injective, sdiff_top, BooleanSubalgebra.coe_subtype, CoheytingHomClass.toBoundedLatticeHomClass, symmDiff_eq_left, Types.monoOverEquivalenceSet_inverse_obj, sdiff_bot, Booleanisation.lift_inf_lift, BooleanSubalgebra.inclusion_rfl, hnot_sup_self, symmDiff_right_injective, sdiff_eq_sdiff_iff_inf_eq_inf, maximal_subtype, Finset.sup_himp_right, compl_eq_iff_isCompl, symmDiff_eq_top, Set.one_mem_div_iff, symmDiff_sdiff_inf, Fin.range_natAdd_eq_Ioi, symmDiff_symmDiff_inf, Set.pairwise_disjoint_Ico_intCast, disjoint_disjointed, SimpleGraph.disjoint_fromEdgeSet, sdiff_symmDiff_eq_sup, sup_sdiff_distrib, sdiff_eq_left, inf_sdiff_left_comm, PUnit.sup_eq, symmDiff_eq_sup, Set.pairwiseDisjoint_fiber, Booleanisation.lift_sup_lift, WithTop.orderIsoSumLexPUnit_symm_inr, sdiff_sdiff_right_self, instWellFoundedGTUnit, bihimp_bihimp_bihimp_comm, sdiff_le_iff, le_sup_sdiff_sup_sdiff, Set.zero_notMem_neg_add_iff, Set.disjoint_image_inl_range_inr, BooleanSubalgebra.coe_comap, subsingleton_setOf_mem_iff_pairwise_disjoint, Set.pairwiseDisjoint_image_right_iff, Finset.compl_truncatedInf, BoolAlg.inv_hom_apply, Types.monoOverEquivalenceSet_unitIso, boolAlg_dual_comp_forget_to_bddDistLat, codisjoint_himp_self_left, FinBoolAlg.hasForgetToFinPartOrd_forgetβ_map, BooleanSubalgebra.mem_map_equiv, sdiff_symmDiff_left, sup_sdiff_self_right, FinBoolAlg.forgetToBoolAlg_full, Finset.inf_sdiff_left, Set.symmDiff_nonempty, compl_le_iff_compl_le, Set.preimage_symmDiff, symmDiff_left_comm, BooleanSubalgebra.inclusion_apply, Set.functorToTypes_map, Set.Finite.sup, ofDual_bihimp, Nat.isCompl_even_odd, Set.subset_image_symmDiff, Set.zero_mem_sub_iff, BooleanSubalgebra.map_id, toDual_symmDiff, compl_bihimp_compl, Set.pairwiseDisjoint_image_left_iff, Set.monotone_image, Set.wcovBy_insert, hnot_anti, inf_sdiff_right, symmDiff_right_involutive, Booleanisation.lift_le_comp, AlgebraicGeometry.Scheme.IdealSheafData.support_bot, map_symmDiff, symmDiff_symmDiff_symmDiff_comm, Fin.val_top, minimal_subtype, bihimp_eq', Set.instPreservesColimitsOfShapeFunctorToTypesOfIsFilteredOrEmpty, sdiff_eq_self_iff_disjoint', hnot_le_comm, PUnit.inf_eq, sup_sdiff_self, Coheyting.boundary_sup_sup_boundary_inf, Set.covBy_iff_exists_insert, Set.disjoint_range_inl_image_inr, partialSups_add_one_eq_sup_disjointed, FinBoolAlg.hasForgetToFinPartOrd_forgetβ_obj_str, Set.pairwise_disjoint_Ico_add_zsmul, sup_sdiff_left, bihimp_isAssociative, Finpartition.parts_extendOfLE_of_eq, top_symmDiff', inf_symmDiff_symmDiff, top_sdiff', BooleanSubalgebra.supClosed, inf_sdiff_distrib_left, compl_bihimp, MeasureTheory.preVariation.sum_le_preVariationFun_of_subset, codisjoint_himp_self_right, hnot_hnot_sup_distrib, disjoint_sdiff_self_left, Types.monoOverEquivalenceSet_counitIso, Order.Ideal.IsPrime.isMaximal, sdiff_sdiff_left', FinBoolAlg.dual_map, symmDiff_symmDiff_cancel_right, OrderIso.asBoolAlgAsBoolRing_symm_apply, Finset.sup_himp_left, iSupβ_eq_top, symmDiff_bot, BoolAlg.id_apply, sup_sdiff_injOn, Fin.zero_eq_top, Pi.mulSupport_mulSingle_disjoint, disjointed_partialSups, Set.prod_subset_compl_diagonal_iff_disjoint, hnot_le_iff_codisjoint_right, BooleanAlgebra.eq_iff_atom_le_iff, Fin.rev_bot, inf_sdiff_left, toBoolRing_symmDiff, bihimp_himp_right, Booleanisation.comp_le_comp, bihimp_assoc, Finset.disjiUnion_Iic_disjointed, le_sdiff_sup, Set.symmDiff_union_subset, Coheyting.boundary_bot, Set.pairwise_disjoint_Ioo_intCast, FinBoolAlg.forgetToBoolAlgFaithful, Coheyting.boundary_le_boundary_sup_sup_boundary_inf_right, sdiff_symmDiff_right, isAtom_compl, toBoolAlg_mul, Finset.compl_truncatedSup, sdiff_le_iff, Order.Ideal.IsPrime.mem_or_compl_mem, Function.disjoint_support_iff, bihimp_eq_bot, Set.union_symmDiff_union_subset, sup_sdiff_symmDiff, codisjoint_hnot_hnot_right_iff, Set.one_mem_inv_mul_iff, BooleanSubalgebra.comap_comap, Finpartition.avoid_parts_val, WithBot.orderIsoPUnitSumLex_bot, Fin.succ_top, BoolAlg.ofHom_apply, BoolAlg.forget_map, CoheytingAlgebra.top_sdiff, Set.disjoint_univ_pi, RingHom.asBoolAlg_toFun, bihimp_right_injective, Set.pairwiseDisjoint_singleton_iff_injOn, sdiff_triangle
|
toSDiff π | CompOp | 115 mathmath: sdiff_eq_sdiff_iff, Pi.symmDiff_def, sdiff_sup_cancel, symmDiff_le, sdiff_le_iff', bot_sdiff, Pi.symmDiff_apply, sdiff_sdiff_comm, sup_sdiff_right_self, Disjoint.sdiff_eq_right, Disjoint.disjoint_sdiff_left, isLeast_sdiff, Disjoint.sup_sdiff_cancel_left, hnot_symmDiff_self, IsCompl.symmDiff_eq_top, symmDiff_top', symmDiff_of_ge, sdiff_le_sdiff, sdiff_inf_self_left, sdiff_le_hnot, toDual_sdiff, ofDual_himp, symmDiff_fst, sdiff_le_iff_left, bot_symmDiff, sdiff_self, symmDiff_comm, sup_sdiff_cancel_right, iSup_sdiff_eq, CoheytingHomClass.map_sdiff, symmDiff_snd, Disjoint.symmDiff_eq_sup, sdiff_le_sdiff_of_sup_le_sup_right, le_sup_sdiff, sdiff_sdiff_sdiff_le_sdiff, hnot_sdiff_comm, sdiff_le_sdiff_right, inf_sdiff_sup_left, sup_sdiff_right, symmDiff_eq_sup_sdiff_inf, gc_sdiff_sup, symmDiff_sup_inf, symmDiff_self, symmDiff_triangle, sdiff_sdiff_self, sdiff_le_inf_hnot, CoheytingHom.map_sdiff', sdiff_eq_bot_iff, sdiff_le, sdiff_eq_sInf, sdiff_sup_sdiff_cancel', sdiff_sup_self, Disjoint.sdiff_eq_left, le_sdiff_iff, symmDiff_isCommutative, sdiff_sdiff, sdiff_inf_self_right, Disjoint.disjoint_sdiff_right, sdiff_sdiff_le, hnot_hnot_sdiff_distrib, sdiff_inf, le_symmDiff_sup_left, sup_sdiff_left_self, sup_sdiff_self_left, symmDiff_sdiff, symmDiff_sdiff_eq_sup, symmDiff_le_sup, symmDiff_eq_bot, inf_sdiff_sup_right, symmDiff_le_iff, inf_sup_symmDiff, sdiff_le_comm, sdiff_sdiff_left, sdiff_sup_sdiff_cancel, sdiff_inf_distrib, le_symmDiff_sup_right, hnot_sdiff, sup_sdiff, symmDiff_hnot_self, toDual_bihimp, sdiff_top, sdiff_idem, ofDual_symmDiff, sdiff_bot, symmDiff_sdiff_inf, sup_sdiff_cancel', symmDiff_symmDiff_inf, symmDiff_of_le, sdiff_symmDiff_eq_sup, sup_sdiff_distrib, sdiff_le_iff, le_sup_sdiff_sup_sdiff, sup_sdiff_self_right, sdiff_le_sdiff_left, sup_sdiff_eq_sup, ofDual_bihimp, toDual_symmDiff, inf_sdiff_right, map_symmDiff, Disjoint.le_sdiff_of_le_left, sup_sdiff_self, sup_sdiff_left, top_symmDiff', inf_symmDiff_symmDiff, sdiff_right_comm, top_sdiff', sdiff_le_sdiff_of_sup_le_sup_left, symmDiff_bot, inf_sdiff_left, sdiff_iSup_eq, le_sdiff_sup, sdiff_le_iff, Disjoint.sup_sdiff_cancel_right, CoheytingAlgebra.top_sdiff, sdiff_triangle
|