Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Order/Heyting/Basic.lean

Statistics

MetricCount
DefinitionsBiheytingAlgebra, toCoheytingAlgebra, toHNot, toHeytingAlgebra, toSDiff, CoheytingAlgebra, ofHNot, ofSDiff, toBoundedOrder, toDistribLattice, toGeneralizedCoheytingAlgebra, toHNot, toOrderTop, biheytingAlgebra, coheytingAlgebra, generalizedCoheytingAlgebra, generalizedHeytingAlgebra, heytingAlgebra, GeneralizedCoheytingAlgebra, toDistribLattice, toLattice, toOrderBot, toSDiff, GeneralizedHeytingAlgebra, toDistribLattice, toHImp, toLattice, toOrderTop, HeytingAlgebra, ofCompl, ofHImp, toBoundedOrder, toCompl, toGeneralizedHeytingAlgebra, toOrderBot, toBiheytingAlgebra, instBiheytingAlgebra, instCoheytingAlgebra, instGeneralizedCoheytingAlgebra, instGeneralizedHeytingAlgebra, instHeytingAlgebra, instBiheytingAlgebra, instBiheytingAlgebra, instCoheytingAlgebra, instGeneralizedCoheytingAlgebra, instGeneralizedHeytingAlgebra, instHImpForall, instHNotForall, instHeytingAlgebra, instBiheytingAlgebra, instCoheytingAlgebra, instCompl, instGeneralizedCoheytingAlgebra, instGeneralizedHeytingAlgebra, instHImp, instHNot, instHeytingAlgebra, instSDiff, instHeytingAlgebra
59
Theoremssdiff_le_iff, top_sdiff, himp_eq_left, himp_eq_right, himp_inf_cancel_left, himp_inf_cancel_right, himp_le_of_right_le, hnot_le_left, hnot_le_right, top_sdiff, disjoint_sdiff_left, disjoint_sdiff_right, le_compl_left, le_compl_right, le_sdiff_of_le_left, sdiff_eq_left, sdiff_eq_right, sup_sdiff_cancel_left, sup_sdiff_cancel_right, sdiff_le_iff, le_himp_iff, himp_bot, compl_eq, eq_compl, eq_hnot, hnot_eq, codisjoint_hnot_left, codisjoint_hnot_right, disjoint_compl_left, disjoint_compl_right, bot_eq, compl_eq, himp_eq, hnot_eq, inf_eq, sdiff_eq, sup_eq, top_eq, himp_apply, himp_def, hnot_apply, hnot_def, bot_himp, bot_sdiff, codisjoint_hnot_hnot_left_iff, codisjoint_hnot_hnot_right_iff, codisjoint_hnot_left, codisjoint_hnot_right, compl_anti, compl_bot, compl_compl_compl, compl_compl_himp_distrib, compl_compl_inf_distrib, compl_iff_not, compl_inf_eq_bot, compl_inf_self, compl_le_compl, compl_le_himp, compl_le_hnot, compl_ne_self, compl_sup, compl_sup_compl_le, compl_sup_distrib, compl_sup_le_himp, compl_top, compl_unique, disjoint_compl_compl_left_iff, disjoint_compl_compl_right_iff, disjoint_compl_left, disjoint_compl_right, fst_compl, fst_himp, fst_hnot, fst_sdiff, gc_inf_himp, gc_sdiff_sup, himp_bot, himp_compl, himp_compl_comm, himp_eq_himp_iff, himp_eq_top_iff, himp_himp, himp_idem, himp_iff_imp, himp_inf_distrib, himp_inf_himp_cancel, himp_inf_himp_inf_le, himp_inf_le, himp_inf_self, himp_le_himp, himp_le_himp_himp_himp, himp_le_himp_left, himp_le_himp_right, himp_left_comm, himp_ne_himp_iff, himp_self, himp_top, himp_triangle, hnot_anti, hnot_bot, hnot_hnot_hnot, hnot_hnot_le, hnot_hnot_sdiff_distrib, hnot_hnot_sup_distrib, hnot_inf_distrib, hnot_le_comm, hnot_le_hnot, hnot_le_iff_codisjoint_left, hnot_le_iff_codisjoint_right, hnot_sdiff, hnot_sdiff_comm, hnot_sup_self, hnot_top, inf_compl_eq_bot, inf_compl_self, inf_himp, inf_himp_le, inf_sdiff_left, inf_sdiff_right, inf_sdiff_sup_left, inf_sdiff_sup_right, le_compl_comm, le_compl_compl, le_compl_iff_disjoint_left, le_compl_iff_disjoint_right, le_compl_iff_le_compl, le_compl_of_le_compl, le_compl_self, le_himp, le_himp_comm, le_himp_himp, le_himp_iff, le_himp_iff', le_himp_iff_left, le_hnot_inf_hnot, le_sdiff_sup, le_sup_sdiff, le_sup_sdiff_sup_sdiff, lt_compl_self, ne_compl_self, ofDual_compl, ofDual_himp, ofDual_hnot, sdiff_bot, sdiff_eq_bot_iff, sdiff_eq_sdiff_iff, sdiff_idem, sdiff_inf, sdiff_inf_distrib, sdiff_inf_self_left, sdiff_inf_self_right, sdiff_le, sdiff_le_comm, sdiff_le_hnot, sdiff_le_iff, sdiff_le_iff', sdiff_le_iff_left, sdiff_le_inf_hnot, sdiff_le_sdiff, sdiff_le_sdiff_left, sdiff_le_sdiff_of_sup_le_sup_left, sdiff_le_sdiff_of_sup_le_sup_right, sdiff_le_sdiff_right, sdiff_ne_sdiff_iff, sdiff_right_comm, sdiff_sdiff, sdiff_sdiff_comm, sdiff_sdiff_le, sdiff_sdiff_left, sdiff_sdiff_sdiff_le_sdiff, sdiff_sdiff_self, sdiff_self, sdiff_sup_cancel, sdiff_sup_sdiff_cancel, sdiff_sup_sdiff_cancel', sdiff_sup_self, sdiff_top, sdiff_triangle, snd_compl, snd_himp, snd_hnot, snd_sdiff, sup_compl_le_himp, sup_himp_distrib, sup_himp_self_left, sup_himp_self_right, sup_hnot_self, sup_le_of_le_sdiff_left, sup_le_of_le_sdiff_right, sup_sdiff, sup_sdiff_cancel', sup_sdiff_cancel_right, sup_sdiff_distrib, sup_sdiff_eq_sup, sup_sdiff_left, sup_sdiff_left_self, sup_sdiff_right, sup_sdiff_right_self, sup_sdiff_self, sup_sdiff_self_left, sup_sdiff_self_right, toDual_compl, toDual_hnot, toDual_sdiff, top_himp, top_sdiff'
206
Total265

BiheytingAlgebra

Definitions

NameCategoryTheorems
toCoheytingAlgebra πŸ“–CompOp
362 mathmath: Set.pairwiseDisjoint_range_iff, BooleanSubalgebra.mem_toSublattice, map_symmDiff', BoolAlg.coe_id, Set.pairwise_disjoint_Ioc_zpow, codisjoint_iff_compl_le_right, Set.pairwise_disjoint_Ioo_add_zsmul, Set.inter_symmDiff_distrib_left, Set.functorToTypes_obj, compl_symmDiff_self, Set.Finite.inf_of_right, CategoryTheory.Limits.Types.binaryCofan_isColimit_iff, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_obj_coe, Sym2.disjoint_diagSet_fromRel, Set.disjoint_compl_left_iff_subset, ofBoolRing_sub, bihimp_left_involutive, BiheytingHom.map_sdiff', Set.pairwise_disjoint_Ico_zsmul, WithBot.orderIsoPUnitSumLex_symm_inl, bihimp_bihimp_cancel_right, bihimp_eq_left, symmDiff_eq', Set.pairwise_disjoint_Ioo_mul_zpow, sup_inf_inf_compl, BooleanSubalgebra.map_map, Set.sdiff_singleton_wcovBy, Set.image_symmDiff, codisjoint_bihimp_sup, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_obj_carrier, toBoolRing_inf, compl_inf, symmDiff_compl_self, Finset.disjoint_coe, Finset.pairwiseDisjoint_coe, Set.disjoint_of_subset_iff_left_eq_empty, inf_himp_bihimp, SetRel.core_mono, BoolAlg.ext_iff, Finset.compl_inf, Set.toFinset_symmDiff, WithBot.orderIsoPUnitSumLex_symm_inr, Order.Ideal.IsProper.notMem_or_compl_notMem, symmDiff_top, Set.isCompl_range_some_none, Set.indicator_symmDiff, pairwise_disjoint_fiber, Finset.compl_sup, Finset.inclusion_exclusion_card_inf_compl, bihimp_right_surjective, ofBoolAlg_inf, Set.symmDiff_def, Set.covBy_iff_exists_sdiff_singleton, instWellFoundedLTSubtypeSetFinite, disjoint_compl_right_iff, SetRel.prod_comp_prod, codisjoint_iff_compl_le_left, Set.disjoint_image_left, Set.sdiff_singleton_covBy, BooleanSubalgebra.inf_mem, bihimp_himp_left, Types.monoOverEquivalenceSet_inverse_map, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_map, top_symmDiff, BiheytingHom.toFun_eq_coe_aux, Set.pairwise_disjoint_Ioc_zsmul, isCoatom_compl, bihimp_eq_right, Set.subset_compl_iff_disjoint_right, BooleanSubalgebra.subtype_comp_inclusion, boolRingCatEquivBoolAlg_functor, Set.mem_symmDiff, BooleanSubalgebra.sup_mem, BoolAlg.ofHom_comp, compl_symmDiff, BooleanSubalgebra.mem_comap, SetRel.image_core_gc, Set.disjoint_sdiff_inter, ofBoolRing_add, Set.pairwise_disjoint_Ioo_add_intCast, Set.covBy_insert, compl_lt_self, BooleanSubalgebra.bot_mem', HasSubset.Subset.disjoint_compl_right, disjoint_of_sSup_disjoint, himp_bihimp_left, bihimp_left_comm, BooleanSubalgebra.coe_map, Finset.inf_himp_right, SimpleGraph.edgeSet_eq_iff, Set.pairwise_disjoint_Ioc_add_zsmul, BoolAlg.hom_id, WithTop.orderIsoSumLexPUnit_toLex, Set.disjoint_powerset_insert, Set.disjoint_toFinset, bihimp_left_surjective, bihimp_le_iff_left, Set.pairwise_disjoint_Ioc_mul_zpow, Set.pairwise_disjoint_Ico_mul_zpow, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, WithTop.orderIsoSumLexPUnit_symm_inl, Set.offDiag_mono, bihimp_le_iff_right, MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion, BooleanSubalgebra.mk_inf_mk, SimpleGraph.disjoint_edgeSet, iSup_eq_top, bihimp_bihimp_self, Finset.inclusion_exclusion_sum_inf_compl, FinBoolAlg.forgetToFinPartOrdFaithful, compl_image_latticeClosure, toBoolAlg_add, Set.union_symmDiff_subset, BooleanSubalgebra.subtype_injective, ofBoolAlg_sup, Set.pairwise_disjoint_Ico_add_intCast, Finset.isCoatom_compl_singleton, BooleanSubalgebra.apply_coe_mem_map, Set.subset_diff, Int.isCompl_even_odd, himp_le, compl_lt_compl_iff_lt, Order.Ideal.isPrime_iff_mem_or_compl_mem, toBoolAlg_add_add_mul, Set.Finite.toFinset_symmDiff, Finset.diffs_compls_eq_infs, BiheytingHomClass.toLatticeHomClass, Set.nsmul_right_monotone, compl_image_latticeClosure_eq_of_compl_image_eq_self, symmDiff_eq, Set.mulIndicator_symmDiff, WithTop.orderIsoSumLexPUnit_top, OrderIso.compl_symm_apply, ofBoolRing_le_ofBoolRing_iff, ofBoolAlg_mul_ofBoolAlg_eq_left_iff, BooleanSubalgebra.mk_sup_mk, himp_le_left, Set.disjoint_prod, Finset.inf_sdiff_right, bihimp_eq, BooleanSubalgebra.coe_inclusion, BooleanSubalgebra.comap_id, Set.indicator_eq_zero', bihimp_right_inj, bihimp_right_comm, Set.disjoint_image_iff, Set.disjoint_pi, Set.indicator_eq_zero, TopologicalSpace.Clopens.exists_finset_eq_sup_prod, Set.empty_covBy_singleton, Coheyting.boundary_eq_bot, disjoint_of_sSup_disjoint_of_le_of_le, bihimp_iff_iff, BooleanSubalgebra.latticeClosure_subset_closure, BooleanAlgebra.le_iff_atom_le_imp, ofBoolAlg_symmDiff, BiheytingHom.toFun_eq_coe, Set.pow_right_monotone, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_carrier, Set.apply_indicator_symmDiff, BooleanSubalgebra.infClosed, BooleanSubalgebra.closure_latticeClosure, RingHom.asBoolAlg_id, compl_le_self, Set.disjoint_compl_right_iff_subset, BoolAlg.hom_comp, Set.pairwise_disjoint_Ioo_zpow, Set.Finite.inf_of_left, gc_Ici_sInf, Set.disjoint_image_image, Set.symmDiff_subset_union, BooleanSubalgebra.mem_map_of_mem, eq_compl_iff_isCompl, Function.disjoint_mulSupport_iff, SimpleGraph.compl_neighborSet_disjoint, BooleanSubalgebra.val_inf, RingHom.asBoolAlg_comp, BooleanSubalgebra.subtype_apply, Set.zero_mem_neg_add_iff, Set.pairwise_disjoint_Ioc_intCast, BooleanSubalgebra.inclusion_injective, Set.subset_compl_iff_disjoint_left, Types.monoOverEquivalenceSet_functor_map, BoolAlg.ofHom_id, BoolAlg.dual_map, disjoint_compl_left_iff, Set.pairwise_disjoint_Ioo_zsmul, CategoryTheory.Limits.Types.isPushout_of_bicartSq, Pi.support_single_disjoint, HasSubset.Subset.disjoint_compl_left, BiheytingHomClass.toCoheytingHomClass, boolRingCatEquivBoolAlg_inverse, compl_symmDiff_compl, SimpleGraph.fromEdgeSet_disjoint, Finset.compls_sups, BoolAlg.coe_comp, SetRel.image_mono, Function.Injective.image_strictMono, BoundedLatticeHom.asBoolRing_apply, Set.disjoint_image_right, Types.monoOverEquivalenceSet_functor_obj, BooleanSubalgebra.val_sup, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_map, himp_bihimp_right, Function.mulSupport_disjoint_iff, Booleanisation.liftLatticeHom_injective, BoolAlg.hom_inv_apply, MeasureTheory.preVariation.sum_le, Set.pairwise_disjoint_Ioc_add_intCast, bihimp_right_involutive, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_isFintype, Set.Finite.symmDiff_congr, MeasureTheory.preVariation.sum_le_preVariationFun_iUnion', Set.inter_symmDiff_distrib_right, bihimp_eq_inf, SetRel.preimage_mono, BooleanSubalgebra.mem_map, Finset.compls_infs, Finset.coe_symmDiff, Set.mulIndicator_eq_one', Function.support_disjoint_iff, Set.isCompl_range_inl_range_inr, Set.one_notMem_inv_mul_iff, Set.preimage_eq_empty_iff, BoolAlg.comp_apply, Finset.mem_inf, PUnit.top_eq, TopologicalSpace.Clopens.surjective_finset_sup_prod, WithBot.orderIsoPUnitSumLex_toLex, ofBoolRing_mul, Set.disjoint_image_inl_image_inr, compl_antitone, Set.disjoint_sdiff_left, compl_strictAnti, gc_sSup_Iic, sdiff_compl, Set.pairwise_disjoint_Ico_zpow, BoundedLatticeHom.asBoolRing_id, BiheytingHom.map_himp', Set.disjoint_preimage_iff, finBoolAlg_dual_comp_forget_to_finBddDistLat, Set.apply_mulIndicator_symmDiff, Finset.infs_compls_eq_diffs, TopologicalSpace.Clopens.coe_finset_sup, Finset.sup_sdiff_left, SimpleGraph.IsCompleteBetween.disjoint, Set.disjoint_sdiff_right, symmDiff_eq_Xor', Set.zero_notMem_sub_iff, MeasureTheory.preVariation.exists_Finpartition_sum_ge, Set.one_notMem_div_iff, bihimp_left_inj, bihimp_left_injective, BoundedLatticeHom.asBoolRing_comp, MeasureTheory.preVariation.exists_Finpartition_sum_gt, OrderIso.asBoolAlgAsBoolRing_apply, sSup_eq_top, Set.Finite.disjoint_toFinset, Finset.compls_infs_eq_diffs, bihimp_bihimp_cancel_left, Set.pairwiseDisjoint_range_singleton, symmDiff_symmDiff_right', Set.Finite.symmDiff, Set.disjoint_diagonal_offDiag, SetRel.gc_leftDual_rightDual, BooleanSubalgebra.mem_carrier, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_obj_coe, compl_le_compl_iff_le, Set.symmDiff_eq_empty, OrderIso.compl_apply, Set.mulIndicator_eq_one, compl_le_hnot, BooleanSubalgebra.coe_subtype, Types.monoOverEquivalenceSet_inverse_obj, BooleanSubalgebra.inclusion_rfl, maximal_subtype, Finset.sup_himp_right, compl_eq_iff_isCompl, symmDiff_eq_top, Set.one_mem_div_iff, Set.pairwise_disjoint_Ico_intCast, SimpleGraph.disjoint_fromEdgeSet, PUnit.sup_eq, Set.pairwiseDisjoint_fiber, WithTop.orderIsoSumLexPUnit_symm_inr, instWellFoundedGTUnit, Finset.isCoatom_iff, bihimp_bihimp_bihimp_comm, Set.zero_notMem_neg_add_iff, Set.disjoint_image_inl_range_inr, BooleanSubalgebra.coe_comap, subsingleton_setOf_mem_iff_pairwise_disjoint, Set.pairwiseDisjoint_image_right_iff, Finset.compl_truncatedInf, BoolAlg.inv_hom_apply, Types.monoOverEquivalenceSet_unitIso, boolAlg_dual_comp_forget_to_bddDistLat, codisjoint_himp_self_left, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, BooleanSubalgebra.mem_map_equiv, FinBoolAlg.forgetToBoolAlg_full, Finset.inf_sdiff_left, Set.symmDiff_nonempty, compl_le_iff_compl_le, Set.preimage_symmDiff, BooleanSubalgebra.inclusion_apply, Set.functorToTypes_map, Set.Finite.sup, Nat.isCompl_even_odd, Set.subset_image_symmDiff, Set.zero_mem_sub_iff, BooleanSubalgebra.map_id, compl_bihimp_compl, Set.pairwiseDisjoint_image_left_iff, Set.monotone_image, Set.wcovBy_insert, minimal_subtype, bihimp_eq', Set.instPreservesColimitsOfShapeFunctorToTypesOfIsFilteredOrEmpty, PUnit.inf_eq, Set.covBy_iff_exists_insert, Set.disjoint_range_inl_image_inr, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_str, Set.pairwise_disjoint_Ico_add_zsmul, bihimp_isAssociative, BooleanSubalgebra.supClosed, compl_bihimp, MeasureTheory.preVariation.sum_le_preVariationFun_of_subset, codisjoint_himp_self_right, Types.monoOverEquivalenceSet_counitIso, Order.Ideal.IsPrime.isMaximal, FinBoolAlg.dual_map, OrderIso.asBoolAlgAsBoolRing_symm_apply, Finset.sup_himp_left, iSupβ‚‚_eq_top, BoolAlg.id_apply, Pi.mulSupport_mulSingle_disjoint, Set.prod_subset_compl_diagonal_iff_disjoint, BooleanAlgebra.eq_iff_atom_le_iff, toBoolRing_symmDiff, bihimp_himp_right, bihimp_assoc, Set.symmDiff_union_subset, Set.pairwise_disjoint_Ioo_intCast, FinBoolAlg.forgetToBoolAlgFaithful, isAtom_compl, toBoolAlg_mul, Finset.compl_truncatedSup, Finset.card_truncatedSup_union_add_card_truncatedSup_infs, Order.Ideal.IsPrime.mem_or_compl_mem, Function.disjoint_support_iff, bihimp_eq_bot, Set.union_symmDiff_union_subset, Set.one_mem_inv_mul_iff, BooleanSubalgebra.comap_comap, WithBot.orderIsoPUnitSumLex_bot, BoolAlg.ofHom_apply, BoolAlg.forget_map, Set.disjoint_univ_pi, RingHom.asBoolAlg_toFun, bihimp_right_injective, Set.pairwiseDisjoint_singleton_iff_injOn
toHNot πŸ“–CompOp
5 mathmath: SimpleGraph.Finsubgraph.coe_hnot, hnot_eq_compl, PUnit.hnot_eq, compl_le_hnot, top_sdiff
toHeytingAlgebra πŸ“–CompOp
123 mathmath: Set.pairwiseDisjoint_range_iff, Set.pairwise_disjoint_Ioc_zpow, Set.pairwise_disjoint_Ioo_add_zsmul, BiheytingHomClass.toHeytingHomClass, Sym2.disjoint_diagSet_fromRel, Set.disjoint_compl_left_iff_subset, Set.pairwise_disjoint_Ico_zsmul, Set.pairwise_disjoint_Ioo_mul_zpow, PUnit.bot_eq, Finset.disjoint_coe, Finset.pairwiseDisjoint_coe, Set.disjoint_of_subset_iff_left_eq_empty, Finset.compl_inf, pairwise_disjoint_fiber, Finset.compl_sup, disjoint_compl_right_iff, SetRel.prod_comp_prod, Set.disjoint_image_left, Set.pairwise_disjoint_Ioc_zsmul, isCoatom_compl, Set.subset_compl_iff_disjoint_right, Set.disjoint_sdiff_inter, Set.pairwise_disjoint_Ioo_add_intCast, HasSubset.Subset.disjoint_compl_right, disjoint_of_sSup_disjoint, Finset.inf_himp_right, SimpleGraph.edgeSet_eq_iff, Set.pairwise_disjoint_Ioc_add_zsmul, Set.disjoint_powerset_insert, Set.disjoint_toFinset, Set.pairwise_disjoint_Ioc_mul_zpow, Set.pairwise_disjoint_Ico_mul_zpow, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, TopologicalSpace.Clopens.coe_disjoint, MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion, SimpleGraph.disjoint_edgeSet, Set.pairwise_disjoint_Ico_add_intCast, Set.subset_diff, Set.disjoint_prod, Set.indicator_eq_zero', Set.disjoint_image_iff, Set.disjoint_pi, Set.indicator_eq_zero, TopologicalSpace.Clopens.exists_finset_eq_sup_prod, disjoint_of_sSup_disjoint_of_le_of_le, BooleanSubalgebra.mem_closure_iff_sup_sdiff, Set.disjoint_compl_right_iff_subset, Set.pairwise_disjoint_Ioo_zpow, Set.disjoint_image_image, Function.disjoint_mulSupport_iff, SimpleGraph.compl_neighborSet_disjoint, Set.zero_mem_neg_add_iff, Set.pairwise_disjoint_Ioc_intCast, Set.subset_compl_iff_disjoint_left, disjoint_compl_left_iff, Set.pairwise_disjoint_Ioo_zsmul, Pi.support_single_disjoint, HasSubset.Subset.disjoint_compl_left, SimpleGraph.fromEdgeSet_disjoint, Set.disjoint_image_right, Function.mulSupport_disjoint_iff, MeasureTheory.preVariation.sum_le, Set.pairwise_disjoint_Ioc_add_intCast, MeasureTheory.preVariation.sum_le_preVariationFun_iUnion', Set.mulIndicator_eq_one', Function.support_disjoint_iff, Set.one_notMem_inv_mul_iff, Set.preimage_eq_empty_iff, TopologicalSpace.Clopens.surjective_finset_sup_prod, Set.disjoint_image_inl_image_inr, Set.disjoint_sdiff_left, Set.pairwise_disjoint_Ico_zpow, BiheytingHom.map_himp', Set.disjoint_preimage_iff, TopologicalSpace.Clopens.coe_finset_sup, Finset.sup_sdiff_left, SimpleGraph.IsCompleteBetween.disjoint, Set.disjoint_sdiff_right, Set.zero_notMem_sub_iff, MeasureTheory.preVariation.exists_Finpartition_sum_ge, Set.one_notMem_div_iff, MeasureTheory.preVariation.exists_Finpartition_sum_gt, PUnit.himp_eq, Set.Finite.disjoint_toFinset, Set.pairwiseDisjoint_range_singleton, Set.disjoint_diagonal_offDiag, Set.mulIndicator_eq_one, compl_le_hnot, Finset.sup_himp_right, Set.one_mem_div_iff, Set.pairwise_disjoint_Ico_intCast, SimpleGraph.disjoint_fromEdgeSet, Set.pairwiseDisjoint_fiber, iInf_eq_bot, Set.zero_notMem_neg_add_iff, Set.disjoint_image_inl_range_inr, subsingleton_setOf_mem_iff_pairwise_disjoint, Set.pairwiseDisjoint_image_right_iff, iInfβ‚‚_eq_bot, ContinuousMap.exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal, Finset.inf_sdiff_left, PUnit.compl_eq, Set.zero_mem_sub_iff, Set.pairwiseDisjoint_image_left_iff, Set.disjoint_range_inl_image_inr, top_sdiff, Set.pairwise_disjoint_Ico_add_zsmul, MeasureTheory.preVariation.sum_le_preVariationFun_of_subset, Finset.sup_himp_left, sdiff_le_iff, Pi.mulSupport_mulSingle_disjoint, Set.prod_subset_compl_diagonal_iff_disjoint, IsCoatom.of_compl, sInf_eq_bot, IsCoatom.compl, Set.pairwise_disjoint_Ioo_intCast, TopologicalSpace.IsOpenCover.exists_finite_nonempty_disjoint_clopen_cover, isAtom_compl, Function.disjoint_support_iff, BiheytingHomClass.map_himp, Set.one_mem_inv_mul_iff, Set.disjoint_univ_pi, Set.pairwiseDisjoint_singleton_iff_injOn
toSDiff πŸ“–CompOp
6 mathmath: BiheytingHomClass.map_sdiff, BiheytingHom.map_sdiff', SimpleGraph.Finsubgraph.coe_sdiff, PUnit.sdiff_eq, top_sdiff, sdiff_le_iff

Theorems

NameKindAssumesProvesValidatesDepends On
sdiff_le_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
toHeytingAlgebra
toSDiff
SemilatticeSup.toMax
β€”β€”
top_sdiff πŸ“–mathematicalβ€”toSDiff
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
toHeytingAlgebra
GeneralizedHeytingAlgebra.toOrderTop
HNot.hnot
toHNot
β€”β€”

Codisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
himp_eq_left πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”himp_eq_right
symm
himp_eq_right πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”top_himp
eq_top
sup_himp_self_left
himp_inf_cancel_left πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeInf.toMin
β€”himp_inf_distrib
himp_self
inf_top_eq
himp_eq_right
himp_inf_cancel_right πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeInf.toMin
β€”himp_inf_distrib
himp_self
top_inf_eq
himp_eq_left
himp_le_of_right_le πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”LE.le.trans_eq
himp_le_himp_left
himp_eq_right
hnot_le_left πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
HNot.hnot
CoheytingAlgebra.toHNot
β€”hnot_le_iff_codisjoint_left
hnot_le_right πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
HNot.hnot
CoheytingAlgebra.toHNot
β€”hnot_le_iff_codisjoint_right

CoheytingAlgebra

Definitions

NameCategoryTheorems
ofHNot πŸ“–CompOpβ€”
ofSDiff πŸ“–CompOpβ€”
toBoundedOrder πŸ“–CompOp
6 mathmath: Coheyting.boundary_top, hnot_top, hnot_bot, sdiff_top, CoheytingHomClass.toBoundedLatticeHomClass, Coheyting.boundary_bot
toDistribLattice πŸ“–CompOpβ€”
toGeneralizedCoheytingAlgebra πŸ“–CompOp
428 mathmath: Set.pairwiseDisjoint_range_iff, BooleanSubalgebra.mem_toSublattice, map_symmDiff', BoolAlg.coe_id, Set.pairwise_disjoint_Ioc_zpow, codisjoint_iff_compl_le_right, Set.pairwise_disjoint_Ioo_add_zsmul, Set.inter_symmDiff_distrib_left, Set.functorToTypes_obj, compl_symmDiff_self, Set.Finite.inf_of_right, CategoryTheory.Limits.Types.binaryCofan_isColimit_iff, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_obj_coe, Sym2.disjoint_diagSet_fromRel, Set.disjoint_compl_left_iff_subset, ofBoolRing_sub, bihimp_left_involutive, AlgebraicGeometry.Scheme.support_nilradical, BiheytingHom.map_sdiff', Set.pairwise_disjoint_Ico_zsmul, WithBot.orderIsoPUnitSumLex_symm_inl, bihimp_bihimp_cancel_right, bihimp_eq_left, symmDiff_eq', Set.pairwise_disjoint_Ioo_mul_zpow, sup_inf_inf_compl, BooleanSubalgebra.map_map, Set.sdiff_singleton_wcovBy, Set.image_symmDiff, codisjoint_bihimp_sup, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_obj_carrier, toBoolRing_inf, compl_inf, symmDiff_compl_self, Finset.disjoint_coe, Finset.pairwiseDisjoint_coe, Set.disjoint_of_subset_iff_left_eq_empty, inf_himp_bihimp, SetRel.core_mono, BoolAlg.ext_iff, Coheyting.boundary_top, Finset.compl_inf, hnot_le_iff_codisjoint_left, Set.toFinset_symmDiff, WithBot.orderIsoPUnitSumLex_symm_inr, Order.Ideal.IsProper.notMem_or_compl_notMem, Coheyting.boundary_le_hnot, symmDiff_top, Set.isCompl_range_some_none, Coheyting.hnot_boundary, hnot_symmDiff_self, Set.indicator_symmDiff, pairwise_disjoint_fiber, Finset.compl_sup, bihimp_right_surjective, Coheyting.hnot_eq_top_iff_exists_boundary, hnot_hnot_le, ofBoolAlg_inf, Set.symmDiff_def, Set.covBy_iff_exists_sdiff_singleton, instWellFoundedLTSubtypeSetFinite, disjoint_compl_right_iff, symmDiff_top', SetRel.prod_comp_prod, codisjoint_iff_compl_le_left, Set.disjoint_image_left, Set.sdiff_singleton_covBy, BooleanSubalgebra.inf_mem, bihimp_himp_left, Types.monoOverEquivalenceSet_inverse_map, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_map, top_symmDiff, codisjoint_hnot_right, Fin.top_eq_last, BiheytingHom.toFun_eq_coe_aux, Set.pairwise_disjoint_Ioc_zsmul, isCoatom_compl, bihimp_eq_right, Set.subset_compl_iff_disjoint_right, BooleanSubalgebra.subtype_comp_inclusion, boolRingCatEquivBoolAlg_functor, le_hnot_inf_hnot, sdiff_le_hnot, Set.mem_symmDiff, BooleanSubalgebra.sup_mem, BoolAlg.ofHom_comp, compl_symmDiff, BooleanSubalgebra.mem_comap, SetRel.image_core_gc, Set.disjoint_sdiff_inter, ofBoolRing_add, Fin.rev_top, CoheytingHom.toFun_eq_coe_aux, Set.pairwise_disjoint_Ioo_add_intCast, toDual_sdiff, liminf_eq_top, Set.covBy_insert, ofDual_himp, compl_lt_self, BooleanSubalgebra.bot_mem', HasSubset.Subset.disjoint_compl_right, Fin.top_eq_zero, disjoint_of_sSup_disjoint, himp_bihimp_left, bihimp_left_comm, BooleanSubalgebra.coe_map, Finset.inf_himp_right, SimpleGraph.edgeSet_eq_iff, Set.pairwise_disjoint_Ioc_add_zsmul, BoolAlg.hom_id, WithTop.orderIsoSumLexPUnit_toLex, Set.disjoint_powerset_insert, Set.disjoint_toFinset, bihimp_left_surjective, bihimp_le_iff_left, Set.pairwise_disjoint_Ioc_mul_zpow, Set.pairwise_disjoint_Ico_mul_zpow, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, WithTop.orderIsoSumLexPUnit_symm_inl, Coheyting.hnot_hnot_sup_boundary, Set.offDiag_mono, bihimp_le_iff_right, MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion, BooleanSubalgebra.mk_inf_mk, SimpleGraph.disjoint_edgeSet, iSup_eq_top, bihimp_bihimp_self, iSup_sdiff_eq, CoheytingHomClass.map_top, FinBoolAlg.forgetToFinPartOrdFaithful, compl_image_latticeClosure, toBoolAlg_add, CoheytingHomClass.map_sdiff, Coheyting.boundary_sup_le, Set.union_symmDiff_subset, CoheytingHomClass.toLatticeHomClass, sup_hnot_self, BooleanSubalgebra.subtype_injective, ofBoolAlg_sup, Set.pairwise_disjoint_Ico_add_intCast, BooleanSubalgebra.apply_coe_mem_map, Set.subset_diff, Int.isCompl_even_odd, hnot_top, himp_le, compl_lt_compl_iff_lt, hnot_sdiff_comm, Order.Ideal.isPrime_iff_mem_or_compl_mem, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_top_iff, toBoolAlg_add_add_mul, Set.Finite.toFinset_symmDiff, Finset.diffs_compls_eq_infs, BiheytingHomClass.toLatticeHomClass, Set.nsmul_right_monotone, compl_image_latticeClosure_eq_of_compl_image_eq_self, CoheytingHom.map_top', symmDiff_eq, Set.mulIndicator_symmDiff, hnot_bot, WithTop.orderIsoSumLexPUnit_top, OrderIso.compl_symm_apply, ofBoolRing_le_ofBoolRing_iff, ofBoolAlg_mul_ofBoolAlg_eq_left_iff, BooleanSubalgebra.mk_sup_mk, himp_le_left, Set.disjoint_prod, Finset.inf_sdiff_right, Coheyting.boundary_inf, bihimp_eq, BooleanSubalgebra.coe_inclusion, BooleanSubalgebra.comap_id, Set.indicator_eq_zero', bihimp_right_inj, bihimp_right_comm, Set.disjoint_image_iff, Set.disjoint_pi, Set.indicator_eq_zero, TopologicalSpace.Clopens.exists_finset_eq_sup_prod, Set.empty_covBy_singleton, disjoint_of_sSup_disjoint_of_le_of_le, bihimp_iff_iff, BooleanSubalgebra.latticeClosure_subset_closure, sdiff_le_inf_hnot, BooleanAlgebra.le_iff_atom_le_imp, ofBoolAlg_symmDiff, BiheytingHom.toFun_eq_coe, Set.pow_right_monotone, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_carrier, Set.apply_indicator_symmDiff, BooleanSubalgebra.infClosed, Coheyting.inf_hnot_self, BooleanSubalgebra.closure_latticeClosure, RingHom.asBoolAlg_id, compl_le_self, Set.disjoint_compl_right_iff_subset, BoolAlg.hom_comp, Set.pairwise_disjoint_Ioo_zpow, Set.Finite.inf_of_left, gc_Ici_sInf, Set.disjoint_image_image, Set.symmDiff_subset_union, BooleanSubalgebra.mem_map_of_mem, eq_compl_iff_isCompl, Function.disjoint_mulSupport_iff, SimpleGraph.compl_neighborSet_disjoint, BooleanSubalgebra.val_inf, RingHom.asBoolAlg_comp, hnot_inf_distrib, CoheytingHom.map_sdiff', Coheyting.boundary_inf_le, codisjoint_hnot_left, sdiff_eq_sInf, BooleanSubalgebra.subtype_apply, Set.zero_mem_neg_add_iff, Set.pairwise_disjoint_Ioc_intCast, BooleanSubalgebra.inclusion_injective, Set.subset_compl_iff_disjoint_left, le_sdiff_iff, Types.monoOverEquivalenceSet_functor_map, BoolAlg.ofHom_id, BoolAlg.dual_map, disjoint_compl_left_iff, Set.pairwise_disjoint_Ioo_zsmul, CategoryTheory.Limits.Types.isPushout_of_bicartSq, Pi.support_single_disjoint, HasSubset.Subset.disjoint_compl_left, Coheyting.boundary_hnot_le, boolRingCatEquivBoolAlg_inverse, compl_symmDiff_compl, Coheyting.boundary_le_boundary_sup_sup_boundary_inf_left, SimpleGraph.fromEdgeSet_disjoint, Finset.compls_sups, BoolAlg.coe_comp, SetRel.image_mono, Function.Injective.image_strictMono, BoundedLatticeHom.asBoolRing_apply, Set.disjoint_image_right, Types.monoOverEquivalenceSet_functor_obj, BooleanSubalgebra.val_sup, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_map, himp_bihimp_right, Function.mulSupport_disjoint_iff, Booleanisation.liftLatticeHom_injective, BoolAlg.hom_inv_apply, MeasureTheory.preVariation.sum_le, Set.pairwise_disjoint_Ioc_add_intCast, bihimp_right_involutive, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_isFintype, Set.Finite.symmDiff_congr, MeasureTheory.preVariation.sum_le_preVariationFun_iUnion', hnot_hnot_sdiff_distrib, Set.inter_symmDiff_distrib_right, bihimp_eq_inf, SetRel.preimage_mono, BooleanSubalgebra.mem_map, Finset.compls_infs, Finset.coe_symmDiff, Set.mulIndicator_eq_one', Function.support_disjoint_iff, Set.isCompl_range_inl_range_inr, Coheyting.boundary_le, Set.one_notMem_inv_mul_iff, Fin.cast_top, Set.preimage_eq_empty_iff, BoolAlg.comp_apply, PUnit.top_eq, isLeast_hnot, TopologicalSpace.Clopens.surjective_finset_sup_prod, WithBot.orderIsoPUnitSumLex_toLex, ofBoolRing_mul, Set.disjoint_image_inl_image_inr, compl_antitone, Set.disjoint_sdiff_left, compl_strictAnti, gc_sSup_Iic, sdiff_compl, Set.pairwise_disjoint_Ico_zpow, BoundedLatticeHom.asBoolRing_id, BiheytingHom.map_himp', Set.disjoint_preimage_iff, finBoolAlg_dual_comp_forget_to_finBddDistLat, Set.apply_mulIndicator_symmDiff, Finset.infs_compls_eq_diffs, TopologicalSpace.Clopens.coe_finset_sup, Finset.sup_sdiff_left, SimpleGraph.IsCompleteBetween.disjoint, Set.disjoint_sdiff_right, codisjoint_hnot_hnot_left_iff, symmDiff_eq_Xor', Set.zero_notMem_sub_iff, MeasureTheory.preVariation.exists_Finpartition_sum_ge, Set.one_notMem_div_iff, bihimp_left_inj, bihimp_left_injective, BoundedLatticeHom.asBoolRing_comp, MeasureTheory.preVariation.exists_Finpartition_sum_gt, OrderIso.asBoolAlgAsBoolRing_apply, sSup_eq_top, Set.Finite.disjoint_toFinset, Finset.compls_infs_eq_diffs, bihimp_bihimp_cancel_left, Set.pairwiseDisjoint_range_singleton, symmDiff_symmDiff_right', Fin.rev_zero_eq_top, Set.Finite.symmDiff, Set.disjoint_diagonal_offDiag, SetRel.gc_leftDual_rightDual, hnot_sdiff, BooleanSubalgebra.mem_carrier, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_obj_coe, compl_le_compl_iff_le, Set.symmDiff_eq_empty, OrderIso.compl_apply, CoheytingHom.toFun_eq_coe, symmDiff_hnot_self, Set.mulIndicator_eq_one, compl_le_hnot, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_top, sdiff_top, BooleanSubalgebra.coe_subtype, CoheytingHomClass.toBoundedLatticeHomClass, Types.monoOverEquivalenceSet_inverse_obj, BooleanSubalgebra.inclusion_rfl, hnot_sup_self, maximal_subtype, Finset.sup_himp_right, compl_eq_iff_isCompl, symmDiff_eq_top, Set.one_mem_div_iff, Fin.range_natAdd_eq_Ioi, Set.pairwise_disjoint_Ico_intCast, SimpleGraph.disjoint_fromEdgeSet, PUnit.sup_eq, Set.pairwiseDisjoint_fiber, WithTop.orderIsoSumLexPUnit_symm_inr, instWellFoundedGTUnit, bihimp_bihimp_bihimp_comm, Set.zero_notMem_neg_add_iff, Set.disjoint_image_inl_range_inr, BooleanSubalgebra.coe_comap, subsingleton_setOf_mem_iff_pairwise_disjoint, Set.pairwiseDisjoint_image_right_iff, Finset.compl_truncatedInf, BoolAlg.inv_hom_apply, Types.monoOverEquivalenceSet_unitIso, boolAlg_dual_comp_forget_to_bddDistLat, codisjoint_himp_self_left, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, BooleanSubalgebra.mem_map_equiv, FinBoolAlg.forgetToBoolAlg_full, Finset.inf_sdiff_left, Set.symmDiff_nonempty, compl_le_iff_compl_le, Set.preimage_symmDiff, BooleanSubalgebra.inclusion_apply, Set.functorToTypes_map, Set.Finite.sup, Nat.isCompl_even_odd, Set.subset_image_symmDiff, Set.zero_mem_sub_iff, BooleanSubalgebra.map_id, compl_bihimp_compl, Set.pairwiseDisjoint_image_left_iff, Set.monotone_image, Set.wcovBy_insert, hnot_anti, AlgebraicGeometry.Scheme.IdealSheafData.support_bot, map_symmDiff, Fin.val_top, minimal_subtype, bihimp_eq', Set.instPreservesColimitsOfShapeFunctorToTypesOfIsFilteredOrEmpty, hnot_le_comm, PUnit.inf_eq, Coheyting.boundary_sup_sup_boundary_inf, Set.covBy_iff_exists_insert, Set.disjoint_range_inl_image_inr, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_str, Set.pairwise_disjoint_Ico_add_zsmul, bihimp_isAssociative, top_symmDiff', top_sdiff', BooleanSubalgebra.supClosed, compl_bihimp, MeasureTheory.preVariation.sum_le_preVariationFun_of_subset, codisjoint_himp_self_right, hnot_hnot_sup_distrib, Types.monoOverEquivalenceSet_counitIso, Order.Ideal.IsPrime.isMaximal, FinBoolAlg.dual_map, OrderIso.asBoolAlgAsBoolRing_symm_apply, Finset.sup_himp_left, iSupβ‚‚_eq_top, BoolAlg.id_apply, Fin.zero_eq_top, Pi.mulSupport_mulSingle_disjoint, Set.prod_subset_compl_diagonal_iff_disjoint, hnot_le_iff_codisjoint_right, BooleanAlgebra.eq_iff_atom_le_iff, Fin.rev_bot, sdiff_iSup_eq, toBoolRing_symmDiff, bihimp_himp_right, bihimp_assoc, Set.symmDiff_union_subset, Coheyting.boundary_bot, Set.pairwise_disjoint_Ioo_intCast, FinBoolAlg.forgetToBoolAlgFaithful, Coheyting.boundary_le_boundary_sup_sup_boundary_inf_right, isAtom_compl, toBoolAlg_mul, Finset.compl_truncatedSup, Order.Ideal.IsPrime.mem_or_compl_mem, Function.disjoint_support_iff, bihimp_eq_bot, Set.union_symmDiff_union_subset, codisjoint_hnot_hnot_right_iff, Set.one_mem_inv_mul_iff, BooleanSubalgebra.comap_comap, WithBot.orderIsoPUnitSumLex_bot, Fin.succ_top, BoolAlg.ofHom_apply, BoolAlg.forget_map, top_sdiff, Set.disjoint_univ_pi, RingHom.asBoolAlg_toFun, bihimp_right_injective, Set.pairwiseDisjoint_singleton_iff_injOn
toHNot πŸ“–CompOp
49 mathmath: hnot_le_iff_codisjoint_left, Coheyting.boundary_le_hnot, Coheyting.hnot_boundary, hnot_symmDiff_self, Coheyting.hnot_eq_top_iff_exists_boundary, hnot_hnot_le, symmDiff_top', ofDual_hnot, codisjoint_hnot_right, le_hnot_inf_hnot, sdiff_le_hnot, Codisjoint.hnot_le_left, map_hnot, Coheyting.hnot_hnot_sup_boundary, sup_hnot_self, hnot_top, hnot_sdiff_comm, toDual_compl, hnot_bot, ofDual_compl, Codisjoint.hnot_le_right, toDual_hnot, Coheyting.boundary_hnot_hnot, IsCompl.hnot_eq, sdiff_le_inf_hnot, hnot_eq_sInf_codisjoint, Coheyting.inf_hnot_self, hnot_inf_distrib, LE.le.codisjoint_hnot_right, codisjoint_hnot_left, IsCompl.eq_hnot, Coheyting.boundary_hnot_le, hnot_hnot_sdiff_distrib, hnot_hnot_hnot, isLeast_hnot, LE.le.codisjoint_hnot_left, codisjoint_hnot_hnot_left_iff, hnot_sdiff, symmDiff_hnot_self, hnot_sup_self, hnot_le_hnot, hnot_anti, hnot_le_comm, top_symmDiff', top_sdiff', hnot_hnot_sup_distrib, hnot_le_iff_codisjoint_right, codisjoint_hnot_hnot_right_iff, top_sdiff
toOrderTop πŸ“–CompOp
78 mathmath: codisjoint_iff_compl_le_right, AlgebraicGeometry.Scheme.support_nilradical, codisjoint_bihimp_sup, Coheyting.boundary_top, Finset.compl_inf, hnot_le_iff_codisjoint_left, Coheyting.hnot_boundary, hnot_symmDiff_self, IsCompl.symmDiff_eq_top, Finset.compl_sup, Finset.inclusion_exclusion_card_inf_compl, Coheyting.hnot_eq_top_iff_exists_boundary, symmDiff_top', codisjoint_iff_compl_le_left, Prop.isCoatom_iff, codisjoint_hnot_right, Fin.top_eq_last, isCoatom_compl, Fin.rev_top, liminf_eq_top, Fin.top_eq_zero, Finset.inf_himp_right, CompleteAtomicBooleanAlgebra.instIsCoatomistic, bihimp_le_iff_left, bihimp_le_iff_right, iSup_eq_top, CoheytingHomClass.map_top, Finset.inclusion_exclusion_sum_inf_compl, sup_hnot_self, Finset.isCoatom_compl_singleton, hnot_top, himp_le, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_top_iff, CoheytingHom.map_top', hnot_bot, Finset.inf_sdiff_right, hnot_eq_sInf_codisjoint, LE.le.codisjoint_hnot_right, codisjoint_hnot_left, RestrictedProduct.isEmbedding_inclusion_top, bihimp_eq_inf, IsAtom.of_compl, Fin.cast_top, Finset.mem_inf, PUnit.top_eq, isLeast_hnot, LE.le.codisjoint_hnot_left, Finset.sup_sdiff_left, codisjoint_hnot_hnot_left_iff, sSup_eq_top, Fin.rev_zero_eq_top, symmDiff_hnot_self, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_top, sdiff_top, hnot_sup_self, Finset.sup_himp_right, Fin.range_natAdd_eq_Ioi, IsAtom.compl, Finset.isCoatom_iff, Finset.compl_truncatedInf, codisjoint_himp_self_left, Finset.inf_sdiff_left, AlgebraicGeometry.Scheme.IdealSheafData.support_bot, Fin.val_top, UpperSet.codisjoint_prod, top_symmDiff', top_sdiff', codisjoint_himp_self_right, iSupβ‚‚_eq_top, Fin.zero_eq_top, hnot_le_iff_codisjoint_right, Fin.rev_bot, isAtom_compl, Finset.compl_truncatedSup, Finset.card_truncatedSup_union_add_card_truncatedSup_infs, codisjoint_hnot_hnot_right_iff, Fin.succ_top, top_sdiff

Theorems

NameKindAssumesProvesValidatesDepends On
top_sdiff πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
toGeneralizedCoheytingAlgebra
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
toOrderTop
HNot.hnot
toHNot
β€”β€”

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_sdiff_left πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
GeneralizedCoheytingAlgebra.toSDiffβ€”mono_left
sdiff_le
disjoint_sdiff_right πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
GeneralizedCoheytingAlgebra.toSDiffβ€”mono_right
sdiff_le
le_compl_left πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
Compl.compl
HeytingAlgebra.toCompl
β€”le_compl_iff_disjoint_left
le_compl_right πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
Compl.compl
HeytingAlgebra.toCompl
β€”le_compl_iff_disjoint_right
le_sdiff_of_le_left πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
GeneralizedCoheytingAlgebra.toSDiffβ€”LE.le.trans
Eq.ge
sdiff_eq_left
sdiff_le_sdiff_right
sdiff_eq_left πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
GeneralizedCoheytingAlgebra.toSDiffβ€”sdiff_bot
eq_bot
sdiff_inf_self_left
sdiff_eq_right πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
GeneralizedCoheytingAlgebra.toSDiffβ€”sdiff_eq_left
symm
sup_sdiff_cancel_left πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sup_sdiff
sdiff_self
bot_sup_eq
sdiff_eq_right
sup_sdiff_cancel_right πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sup_sdiff
sdiff_self
sup_bot_eq
sdiff_eq_left

Function.Injective

Definitions

NameCategoryTheorems
biheytingAlgebra πŸ“–CompOpβ€”
coheytingAlgebra πŸ“–CompOpβ€”
generalizedCoheytingAlgebra πŸ“–CompOpβ€”
generalizedHeytingAlgebra πŸ“–CompOpβ€”
heytingAlgebra πŸ“–CompOpβ€”

GeneralizedCoheytingAlgebra

Definitions

NameCategoryTheorems
toDistribLattice πŸ“–CompOpβ€”
toLattice πŸ“–CompOp
574 mathmath: Set.pairwiseDisjoint_range_iff, BooleanSubalgebra.mem_toSublattice, map_symmDiff', BoolAlg.coe_id, Set.pairwise_disjoint_Ioc_zpow, codisjoint_iff_compl_le_right, Pi.symmDiff_def, Set.pairwise_disjoint_Ioo_add_zsmul, Set.inter_symmDiff_distrib_left, Set.functorToTypes_obj, compl_symmDiff_self, Set.Finite.inf_of_right, CategoryTheory.Limits.Types.binaryCofan_isColimit_iff, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_obj_coe, Sym2.disjoint_diagSet_fromRel, Set.disjoint_compl_left_iff_subset, ofBoolRing_sub, bihimp_left_involutive, AlgebraicGeometry.Scheme.support_nilradical, le_sdiff_right, BiheytingHom.map_sdiff', Set.pairwise_disjoint_Ico_zsmul, WithBot.orderIsoPUnitSumLex_symm_inl, disjoint_sdiff_self_right, bihimp_bihimp_cancel_right, bihimp_eq_left, symmDiff_eq', Set.pairwise_disjoint_Ioo_mul_zpow, sup_inf_inf_compl, BooleanSubalgebra.map_map, sdiff_le_iff', inf_symmDiff_distrib_right, Set.sdiff_singleton_wcovBy, Set.image_symmDiff, bot_sdiff, sdiff_symmDiff, codisjoint_bihimp_sup, Pi.symmDiff_apply, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_obj_carrier, toBoolRing_inf, compl_inf, sup_sdiff_right_self, symmDiff_compl_self, Finset.disjoint_coe, Finset.pairwiseDisjoint_coe, Set.disjoint_of_subset_iff_left_eq_empty, inf_himp_bihimp, SetRel.core_mono, sdiff_sdiff_sup_sdiff', BoolAlg.ext_iff, Coheyting.boundary_top, symmDiff_symmDiff_self', Finset.compl_inf, hnot_le_iff_codisjoint_left, Set.toFinset_symmDiff, WithBot.orderIsoPUnitSumLex_symm_inr, Order.Ideal.IsProper.notMem_or_compl_notMem, Coheyting.boundary_le_hnot, symmDiff_top, sup_inf_inf_sdiff, Set.isCompl_range_some_none, isLeast_sdiff, Coheyting.hnot_boundary, hnot_symmDiff_self, Set.indicator_symmDiff, symmDiff_right_comm, pairwise_disjoint_fiber, Finset.compl_sup, bihimp_right_surjective, Coheyting.hnot_eq_top_iff_exists_boundary, hnot_hnot_le, ofBoolAlg_inf, Set.symmDiff_def, Set.covBy_iff_exists_sdiff_singleton, instWellFoundedLTSubtypeSetFinite, disjoint_compl_right_iff, symmDiff_top', SetRel.prod_comp_prod, codisjoint_iff_compl_le_left, Set.disjoint_image_left, Booleanisation.comp_lt_comp, Set.sdiff_singleton_covBy, BooleanSubalgebra.inf_mem, bihimp_himp_left, symmDiff_left_inj, Types.monoOverEquivalenceSet_inverse_map, disjoint_symmDiff_inf, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_map, top_symmDiff, symmDiff_assoc, codisjoint_hnot_right, Finpartition.mem_avoid, sdiff_sup, Fin.top_eq_last, BiheytingHom.toFun_eq_coe_aux, Set.pairwise_disjoint_Ioc_zsmul, isCoatom_compl, sdiff_symmDiff', bihimp_eq_right, Set.subset_compl_iff_disjoint_right, BooleanSubalgebra.subtype_comp_inclusion, boolRingCatEquivBoolAlg_functor, le_hnot_inf_hnot, sdiff_inf_self_left, sdiff_le_hnot, Set.mem_symmDiff, BooleanSubalgebra.sup_mem, BoolAlg.ofHom_comp, compl_symmDiff, BooleanSubalgebra.mem_comap, SetRel.image_core_gc, Set.disjoint_sdiff_inter, ofBoolRing_add, Fin.rev_top, CoheytingHom.toFun_eq_coe_aux, Set.pairwise_disjoint_Ioo_add_intCast, Fintype.sup_disjointed, liminf_eq_top, Set.covBy_insert, disjoint_sdiff_comm, symmDiff_fst, compl_lt_self, BooleanSubalgebra.bot_mem', HasSubset.Subset.disjoint_compl_right, sdiff_le_iff_left, Fin.top_eq_zero, disjoint_of_sSup_disjoint, bot_symmDiff, himp_bihimp_left, sdiff_self, sdiff_lt_left, bihimp_left_comm, symmDiff_comm, UV.sup_sdiff_mem_of_mem_compression_of_notMem, BooleanSubalgebra.coe_map, Finset.inf_himp_right, SimpleGraph.edgeSet_eq_iff, symmDiff_sdiff_right, Set.pairwise_disjoint_Ioc_add_zsmul, BoolAlg.hom_id, WithTop.orderIsoSumLexPUnit_toLex, Set.disjoint_powerset_insert, symmDiff_left_involutive, Set.disjoint_toFinset, bihimp_left_surjective, bihimp_le_iff_left, symmDiff_sdiff_left, symmDiff_symmDiff_right, Set.pairwise_disjoint_Ioc_mul_zpow, Set.pairwise_disjoint_Ico_mul_zpow, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, WithTop.orderIsoSumLexPUnit_symm_inl, Coheyting.hnot_hnot_sup_boundary, Set.offDiag_mono, bihimp_le_iff_right, MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion, BooleanSubalgebra.mk_inf_mk, SimpleGraph.disjoint_edgeSet, iSup_eq_top, bihimp_bihimp_self, UV.le_of_mem_compression_of_notMem, CoheytingHomClass.map_top, symmDiff_right_inj, FinBoolAlg.forgetToFinPartOrdFaithful, sup_eq_sdiff_sup_sdiff_sup_inf, compl_image_latticeClosure, toBoolAlg_add, Coheyting.boundary_sup_le, Set.union_symmDiff_subset, CoheytingHomClass.toLatticeHomClass, sup_hnot_self, disjointed_add_one, BooleanSubalgebra.subtype_injective, ofBoolAlg_sup, Set.pairwise_disjoint_Ico_add_intCast, symmDiff_snd, BooleanSubalgebra.apply_coe_mem_map, Set.subset_diff, disjointed_le_id, Booleanisation.lift_le_lift, Int.isCompl_even_odd, hnot_top, himp_le, le_sup_sdiff, partialSups_disjointed, sdiff_sdiff_right, compl_lt_compl_iff_lt, sdiff_sdiff_sdiff_le_sdiff, Order.Ideal.isPrime_iff_mem_or_compl_mem, sdiff_inf_right_comm, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_top_iff, toBoolAlg_add_add_mul, Set.Finite.toFinset_symmDiff, disjoint_disjointed_of_lt, Finset.diffs_compls_eq_infs, BiheytingHomClass.toLatticeHomClass, Set.nsmul_right_monotone, inf_sdiff_sup_left, compl_image_latticeClosure_eq_of_compl_image_eq_self, CoheytingHom.map_top', sup_sdiff_right, symmDiff_eq_right, symmDiff_eq, symmDiff_eq_sup_sdiff_inf, Set.mulIndicator_symmDiff, hnot_bot, WithTop.orderIsoSumLexPUnit_top, OrderIso.compl_symm_apply, le_sdiff, ofBoolRing_le_ofBoolRing_iff, ofBoolAlg_mul_ofBoolAlg_eq_left_iff, BooleanSubalgebra.mk_sup_mk, himp_le_left, Set.disjoint_prod, Finset.inf_sdiff_right, Coheyting.boundary_inf, bihimp_eq, BooleanSubalgebra.coe_inclusion, BooleanSubalgebra.comap_id, gc_sdiff_sup, Set.indicator_eq_zero', bihimp_right_inj, bihimp_right_comm, Set.disjoint_image_iff, Set.disjoint_pi, Set.indicator_eq_zero, symmDiff_sup_inf, TopologicalSpace.Clopens.exists_finset_eq_sup_prod, symmDiff_self, le_symmDiff_iff_right, Set.empty_covBy_singleton, symmDiff_triangle, sdiff_sdiff_self, disjoint_of_sSup_disjoint_of_le_of_le, bihimp_iff_iff, BooleanSubalgebra.latticeClosure_subset_closure, sdiff_le_inf_hnot, BooleanAlgebra.le_iff_atom_le_imp, ofBoolAlg_symmDiff, symmDiff_left_surjective, BiheytingHom.toFun_eq_coe, Set.pow_right_monotone, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_carrier, Set.apply_indicator_symmDiff, BooleanSubalgebra.infClosed, Coheyting.inf_hnot_self, sdiff_sdiff_sup_sdiff, BooleanSubalgebra.closure_latticeClosure, RingHom.asBoolAlg_id, inf_symmDiff_distrib_left, compl_le_self, Set.disjoint_compl_right_iff_subset, BoolAlg.hom_comp, Set.pairwise_disjoint_Ioo_zpow, symmDiff_isAssociative, Set.Finite.inf_of_left, gc_Ici_sInf, Set.disjoint_image_image, Set.symmDiff_subset_union, BooleanSubalgebra.mem_map_of_mem, Booleanisation.lift_sdiff_comp, eq_compl_iff_isCompl, Function.disjoint_mulSupport_iff, SimpleGraph.compl_neighborSet_disjoint, BooleanSubalgebra.val_inf, Finset.sup_sdiff_right, RingHom.asBoolAlg_comp, hnot_inf_distrib, CoheytingHom.map_sdiff', Coheyting.boundary_inf_le, codisjoint_hnot_left, sdiff_eq_bot_iff, sdiff_le, BooleanSubalgebra.subtype_apply, Set.zero_mem_neg_add_iff, sdiff_sup_self, Set.pairwise_disjoint_Ioc_intCast, BooleanSubalgebra.inclusion_injective, Set.subset_compl_iff_disjoint_left, Types.monoOverEquivalenceSet_functor_map, symmDiff_isCommutative, BoolAlg.ofHom_id, sdiff_sdiff, BoolAlg.dual_map, disjoint_compl_left_iff, sdiff_inf_self_right, Set.pairwise_disjoint_Ioo_zsmul, CategoryTheory.Limits.Types.isPushout_of_bicartSq, Pi.support_single_disjoint, HasSubset.Subset.disjoint_compl_left, Coheyting.boundary_hnot_le, boolRingCatEquivBoolAlg_inverse, compl_symmDiff_compl, Coheyting.boundary_le_boundary_sup_sup_boundary_inf_left, SimpleGraph.fromEdgeSet_disjoint, Finset.compls_sups, BoolAlg.coe_comp, SetRel.image_mono, disjointed_le, Function.Injective.image_strictMono, BoundedLatticeHom.asBoolRing_apply, inf_sdiff_assoc, Set.disjoint_image_right, Types.monoOverEquivalenceSet_functor_obj, BooleanSubalgebra.val_sup, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_map, himp_bihimp_right, Function.mulSupport_disjoint_iff, Booleanisation.liftLatticeHom_injective, BoolAlg.hom_inv_apply, MeasureTheory.preVariation.sum_le, Set.pairwise_disjoint_Ioc_add_intCast, sdiff_sdiff_le, bihimp_right_involutive, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_isFintype, Set.Finite.symmDiff_congr, MeasureTheory.preVariation.sum_le_preVariationFun_iUnion', Set.inter_symmDiff_distrib_right, Booleanisation.lift_lt_lift, sdiff_inf, bihimp_eq_inf, SetRel.preimage_mono, BooleanSubalgebra.mem_map, Finset.compls_infs, Finset.coe_symmDiff, le_symmDiff_sup_left, Set.mulIndicator_eq_one', Function.support_disjoint_iff, Set.isCompl_range_inl_range_inr, Coheyting.boundary_le, sup_sdiff_left_self, sup_sdiff_self_left, Set.one_notMem_inv_mul_iff, Fin.cast_top, symmDiff_sdiff, Set.preimage_eq_empty_iff, symmDiff_sdiff_eq_sup, symmDiff_le_sup, BoolAlg.comp_apply, PUnit.top_eq, isLeast_hnot, TopologicalSpace.Clopens.surjective_finset_sup_prod, WithBot.orderIsoPUnitSumLex_toLex, ofBoolRing_mul, sdiff_sdiff_right', symmDiff_symmDiff_left, symmDiff_symmDiff_cancel_left, Set.disjoint_image_inl_image_inr, symmDiff_eq_bot, compl_antitone, Set.disjoint_sdiff_left, compl_strictAnti, gc_sSup_Iic, sdiff_compl, Set.pairwise_disjoint_Ico_zpow, inf_sdiff_sup_right, BoundedLatticeHom.asBoolRing_id, Booleanisation.comp_sup_comp, BiheytingHom.map_himp', Booleanisation.comp_sdiff_lift, Set.disjoint_preimage_iff, finBoolAlg_dual_comp_forget_to_finBddDistLat, Set.apply_mulIndicator_symmDiff, Finset.infs_compls_eq_diffs, TopologicalSpace.Clopens.coe_finset_sup, Finset.sup_sdiff_left, le_symmDiff_iff_left, SimpleGraph.IsCompleteBetween.disjoint, Set.disjoint_sdiff_right, symmDiff_le_iff, codisjoint_hnot_hnot_left_iff, UV.disjoint_of_mem_compression_of_notMem, inf_sup_symmDiff, symmDiff_eq_Xor', Booleanisation.lift_lt_comp, sdiff_le_comm, symmDiff_right_surjective, Set.zero_notMem_sub_iff, MeasureTheory.preVariation.exists_Finpartition_sum_ge, Set.one_notMem_div_iff, bihimp_left_inj, bihimp_left_injective, BoundedLatticeHom.asBoolRing_comp, MeasureTheory.preVariation.exists_Finpartition_sum_gt, Fintype.exists_disjointed_le, sdiff_sdiff_left, OrderIso.asBoolAlgAsBoolRing_apply, disjointed_succ, sSup_eq_top, Set.Finite.disjoint_toFinset, Finset.compls_infs_eq_diffs, bihimp_bihimp_cancel_left, inf_sdiff, sdiff_inf_distrib, Set.pairwiseDisjoint_range_singleton, le_symmDiff_sup_right, symmDiff_symmDiff_right', Fin.rev_zero_eq_top, Set.Finite.symmDiff, Set.disjoint_diagonal_offDiag, SetRel.gc_leftDual_rightDual, sdiff_eq_self_iff_disjoint, BooleanSubalgebra.mem_carrier, disjointed_apply, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_obj_coe, Booleanisation.comp_inf_comp, compl_le_compl_iff_le, Set.symmDiff_eq_empty, OrderIso.compl_apply, sup_sdiff, CoheytingHom.toFun_eq_coe, symmDiff_hnot_self, inf_sdiff_distrib_right, Set.mulIndicator_eq_one, compl_le_hnot, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_top, symmDiff_left_injective, sdiff_top, BooleanSubalgebra.coe_subtype, CoheytingHomClass.toBoundedLatticeHomClass, symmDiff_eq_left, Types.monoOverEquivalenceSet_inverse_obj, sdiff_bot, Booleanisation.lift_inf_lift, BooleanSubalgebra.inclusion_rfl, hnot_sup_self, symmDiff_right_injective, sdiff_eq_sdiff_iff_inf_eq_inf, maximal_subtype, Finset.sup_himp_right, compl_eq_iff_isCompl, symmDiff_eq_top, Set.one_mem_div_iff, symmDiff_sdiff_inf, Fin.range_natAdd_eq_Ioi, symmDiff_symmDiff_inf, Set.pairwise_disjoint_Ico_intCast, disjoint_disjointed, SimpleGraph.disjoint_fromEdgeSet, sdiff_symmDiff_eq_sup, sup_sdiff_distrib, sdiff_eq_left, inf_sdiff_left_comm, PUnit.sup_eq, symmDiff_eq_sup, Set.pairwiseDisjoint_fiber, Booleanisation.lift_sup_lift, WithTop.orderIsoSumLexPUnit_symm_inr, sdiff_sdiff_right_self, instWellFoundedGTUnit, bihimp_bihimp_bihimp_comm, sdiff_le_iff, le_sup_sdiff_sup_sdiff, Set.zero_notMem_neg_add_iff, Set.disjoint_image_inl_range_inr, BooleanSubalgebra.coe_comap, subsingleton_setOf_mem_iff_pairwise_disjoint, Set.pairwiseDisjoint_image_right_iff, Finset.compl_truncatedInf, BoolAlg.inv_hom_apply, Types.monoOverEquivalenceSet_unitIso, boolAlg_dual_comp_forget_to_bddDistLat, codisjoint_himp_self_left, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, BooleanSubalgebra.mem_map_equiv, sdiff_symmDiff_left, sup_sdiff_self_right, FinBoolAlg.forgetToBoolAlg_full, Finset.inf_sdiff_left, Set.symmDiff_nonempty, compl_le_iff_compl_le, Set.preimage_symmDiff, symmDiff_left_comm, BooleanSubalgebra.inclusion_apply, Set.functorToTypes_map, Set.Finite.sup, ofDual_bihimp, Nat.isCompl_even_odd, Set.subset_image_symmDiff, Set.zero_mem_sub_iff, BooleanSubalgebra.map_id, toDual_symmDiff, compl_bihimp_compl, Set.pairwiseDisjoint_image_left_iff, Set.monotone_image, Set.wcovBy_insert, hnot_anti, inf_sdiff_right, symmDiff_right_involutive, Booleanisation.lift_le_comp, AlgebraicGeometry.Scheme.IdealSheafData.support_bot, map_symmDiff, symmDiff_symmDiff_symmDiff_comm, Fin.val_top, minimal_subtype, bihimp_eq', Set.instPreservesColimitsOfShapeFunctorToTypesOfIsFilteredOrEmpty, sdiff_eq_self_iff_disjoint', hnot_le_comm, PUnit.inf_eq, sup_sdiff_self, Coheyting.boundary_sup_sup_boundary_inf, Set.covBy_iff_exists_insert, Set.disjoint_range_inl_image_inr, partialSups_add_one_eq_sup_disjointed, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_str, Set.pairwise_disjoint_Ico_add_zsmul, sup_sdiff_left, bihimp_isAssociative, Finpartition.parts_extendOfLE_of_eq, top_symmDiff', inf_symmDiff_symmDiff, top_sdiff', BooleanSubalgebra.supClosed, inf_sdiff_distrib_left, compl_bihimp, MeasureTheory.preVariation.sum_le_preVariationFun_of_subset, codisjoint_himp_self_right, hnot_hnot_sup_distrib, disjoint_sdiff_self_left, Types.monoOverEquivalenceSet_counitIso, Order.Ideal.IsPrime.isMaximal, sdiff_sdiff_left', FinBoolAlg.dual_map, symmDiff_symmDiff_cancel_right, OrderIso.asBoolAlgAsBoolRing_symm_apply, Finset.sup_himp_left, iSupβ‚‚_eq_top, symmDiff_bot, BoolAlg.id_apply, sup_sdiff_injOn, Fin.zero_eq_top, Pi.mulSupport_mulSingle_disjoint, disjointed_partialSups, Set.prod_subset_compl_diagonal_iff_disjoint, hnot_le_iff_codisjoint_right, BooleanAlgebra.eq_iff_atom_le_iff, Fin.rev_bot, inf_sdiff_left, toBoolRing_symmDiff, bihimp_himp_right, Booleanisation.comp_le_comp, bihimp_assoc, Finset.disjiUnion_Iic_disjointed, le_sdiff_sup, Set.symmDiff_union_subset, Coheyting.boundary_bot, Set.pairwise_disjoint_Ioo_intCast, FinBoolAlg.forgetToBoolAlgFaithful, Coheyting.boundary_le_boundary_sup_sup_boundary_inf_right, sdiff_symmDiff_right, isAtom_compl, toBoolAlg_mul, Finset.compl_truncatedSup, sdiff_le_iff, Order.Ideal.IsPrime.mem_or_compl_mem, Function.disjoint_support_iff, bihimp_eq_bot, Set.union_symmDiff_union_subset, sup_sdiff_symmDiff, codisjoint_hnot_hnot_right_iff, Set.one_mem_inv_mul_iff, BooleanSubalgebra.comap_comap, Finpartition.avoid_parts_val, WithBot.orderIsoPUnitSumLex_bot, Fin.succ_top, BoolAlg.ofHom_apply, BoolAlg.forget_map, CoheytingAlgebra.top_sdiff, Set.disjoint_univ_pi, RingHom.asBoolAlg_toFun, bihimp_right_injective, Set.pairwiseDisjoint_singleton_iff_injOn, sdiff_triangle
toOrderBot πŸ“–CompOp
9 mathmath: bot_sdiff, bot_symmDiff, sdiff_self, symmDiff_self, sdiff_sdiff_self, sdiff_eq_bot_iff, symmDiff_eq_bot, sdiff_bot, symmDiff_bot
toSDiff πŸ“–CompOp
115 mathmath: sdiff_eq_sdiff_iff, Pi.symmDiff_def, sdiff_sup_cancel, symmDiff_le, sdiff_le_iff', bot_sdiff, Pi.symmDiff_apply, sdiff_sdiff_comm, sup_sdiff_right_self, Disjoint.sdiff_eq_right, Disjoint.disjoint_sdiff_left, isLeast_sdiff, Disjoint.sup_sdiff_cancel_left, hnot_symmDiff_self, IsCompl.symmDiff_eq_top, symmDiff_top', symmDiff_of_ge, sdiff_le_sdiff, sdiff_inf_self_left, sdiff_le_hnot, toDual_sdiff, ofDual_himp, symmDiff_fst, sdiff_le_iff_left, bot_symmDiff, sdiff_self, symmDiff_comm, sup_sdiff_cancel_right, iSup_sdiff_eq, CoheytingHomClass.map_sdiff, symmDiff_snd, Disjoint.symmDiff_eq_sup, sdiff_le_sdiff_of_sup_le_sup_right, le_sup_sdiff, sdiff_sdiff_sdiff_le_sdiff, hnot_sdiff_comm, sdiff_le_sdiff_right, inf_sdiff_sup_left, sup_sdiff_right, symmDiff_eq_sup_sdiff_inf, gc_sdiff_sup, symmDiff_sup_inf, symmDiff_self, symmDiff_triangle, sdiff_sdiff_self, sdiff_le_inf_hnot, CoheytingHom.map_sdiff', sdiff_eq_bot_iff, sdiff_le, sdiff_eq_sInf, sdiff_sup_sdiff_cancel', sdiff_sup_self, Disjoint.sdiff_eq_left, le_sdiff_iff, symmDiff_isCommutative, sdiff_sdiff, sdiff_inf_self_right, Disjoint.disjoint_sdiff_right, sdiff_sdiff_le, hnot_hnot_sdiff_distrib, sdiff_inf, le_symmDiff_sup_left, sup_sdiff_left_self, sup_sdiff_self_left, symmDiff_sdiff, symmDiff_sdiff_eq_sup, symmDiff_le_sup, symmDiff_eq_bot, inf_sdiff_sup_right, symmDiff_le_iff, inf_sup_symmDiff, sdiff_le_comm, sdiff_sdiff_left, sdiff_sup_sdiff_cancel, sdiff_inf_distrib, le_symmDiff_sup_right, hnot_sdiff, sup_sdiff, symmDiff_hnot_self, toDual_bihimp, sdiff_top, sdiff_idem, ofDual_symmDiff, sdiff_bot, symmDiff_sdiff_inf, sup_sdiff_cancel', symmDiff_symmDiff_inf, symmDiff_of_le, sdiff_symmDiff_eq_sup, sup_sdiff_distrib, sdiff_le_iff, le_sup_sdiff_sup_sdiff, sup_sdiff_self_right, sdiff_le_sdiff_left, sup_sdiff_eq_sup, ofDual_bihimp, toDual_symmDiff, inf_sdiff_right, map_symmDiff, Disjoint.le_sdiff_of_le_left, sup_sdiff_self, sup_sdiff_left, top_symmDiff', inf_symmDiff_symmDiff, sdiff_right_comm, top_sdiff', sdiff_le_sdiff_of_sup_le_sup_left, symmDiff_bot, inf_sdiff_left, sdiff_iSup_eq, le_sdiff_sup, sdiff_le_iff, Disjoint.sup_sdiff_cancel_right, CoheytingAlgebra.top_sdiff, sdiff_triangle

Theorems

NameKindAssumesProvesValidatesDepends On
sdiff_le_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
toLattice
toSDiff
SemilatticeSup.toMax
β€”β€”

GeneralizedHeytingAlgebra

Definitions

NameCategoryTheorems
toDistribLattice πŸ“–CompOp
2 mathmath: HeytAlg.hasForgetToLat_forgetβ‚‚_map, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_str
toHImp πŸ“–CompOp
103 mathmath: HeytingHomClass.map_himp, himp_inf_distrib, sup_himp_self_right, Nucleus.himp_apply, Nucleus.map_himp_apply, sup_compl_le_himp, himp_triangle, IsCompl.bihimp_eq_bot, bihimp_bihimp_sup, himp_inf_le, himp_bot, Codisjoint.himp_eq_left, le_himp_comm, Nucleus.map_himp_le, le_himp_himp, himp_top, bihimp_himp_eq_inf, Heyting.Regular.coe_himp, top_bihimp, toDual_sdiff, himp_iff_imp, ofDual_himp, himp_compl, le_himp_iff_left, Pi.bihimp_apply, Pi.bihimp_def, Codisjoint.himp_le_of_right_le, himp_le_himp_right, isGreatest_himp, himp_himp, himp_eq_top_iff, himp_inf_himp_cancel, himp_inf_himp_inf_le, compl_sup_le_himp, Codisjoint.himp_eq_right, le_himp_iff', bihimp_triangle, himp_eq_himp_iff, Sublocale.himp_mem', inf_himp, bihimp_eq_sup_himp_inf, bihimp_of_le, HeytingHom.map_himp', inf_le_bihimp, bihimp_comm, Sublocale.coe_himp, le_himp_iff, le_himp_iff, Sublocale.himp_mem, compl_compl_himp_distrib, compl_le_himp, bihimp_of_ge, himp_le_himp_himp_himp, bihimp_inf_sup, Codisjoint.himp_inf_cancel_right, bihimp_self, compl_bihimp_self, gc_inf_himp, bot_himp, himp_compl_comm, sup_bihimp_bihimp, BiheytingHom.map_himp', himp_inf_self, himp_iInf_eq, himp_le_iff, iSup_himp_eq, PUnit.himp_eq, himp_left_comm, himp_le_himp_left, sup_himp_self_left, himp_bihimp_eq_inf, Codisjoint.himp_inf_cancel_left, toDual_bihimp, sup_inf_bihimp, ofDual_symmDiff, himp_self, map_bihimp, SimpleGraph.Finsubgraph.coe_himp, bot_bihimp, himp_bihimp, HeytingAlgebra.himp_bot, sup_himp_bihimp, top_himp, le_himp, ofDual_bihimp, toDual_symmDiff, bihimp_fst, bihimp_isCommutative, sup_himp_distrib, himp_le_himp, bihimp_hnot_self, bihimp_top, bihimp_snd, inf_himp_le, Codisjoint.bihimp_eq_inf, le_bihimp_iff, bihimp_eq_top, bihimp_bot, le_bihimp, Heyting.IsRegular.himp, BiheytingHomClass.map_himp, himp_idem, himp_eq_sSup
toLattice πŸ“–CompOp
139 mathmath: Heyting.isRegular_top, himp_inf_distrib, sup_himp_self_right, lt_compl_self, AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, AlgebraicGeometry.Scheme.Hom.preimage_bot, sup_compl_le_himp, himp_triangle, bihimp_bihimp_sup, PUnit.bot_eq, himp_inf_le, himp_bot, le_himp_comm, HeytAlg.Iso.mk_inv, le_himp_himp, Heyting.IsRegular.disjoint_compl_right_iff, himp_top, bihimp_himp_eq_inf, top_bihimp, compl_sup_compl_le, Fin.rev_top, compl_anti, Heyting.Regular.coe_sdiff, le_himp_iff_left, disjoint_compl_compl_left_iff, Pi.bihimp_apply, Pi.bihimp_def, compl_inf_eq_bot, limsup_eq_bot, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, Heyting.Regular.coe_le_coe, PrimeSpectrum.basicOpen_zero, disjoint_compl_left, isGreatest_himp, himp_himp, disjoint_compl_compl_right_iff, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty, himp_eq_top_iff, Heyting.Regular.coe_inf, himp_inf_himp_inf_le, compl_sup_le_himp, MeasureTheory.Content.innerContent_bot, le_compl_self, Heyting.Regular.coe_bot, le_himp_iff', bihimp_triangle, le_compl_iff_le_compl, AlgebraicGeometry.LocallyRingedSpace.basicOpen_zero, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot, AlgebraicGeometry.Scheme.instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensBot, inf_himp, Fin.bot_eq_zero, bihimp_eq_sup_himp_inf, HeytingHom.map_himp', inf_compl_self, Heyting.Regular.coe_top, inf_le_bihimp, bihimp_comm, le_himp_iff, le_himp_iff, HeytingHom.toFun_eq_coe_aux, compl_le_himp, Heyting.Regular.coe_toRegular, himp_le_himp_himp_himp, compl_compl_inf_distrib, compl_sup_distrib, TopologicalSpace.Opens.eq_bot_or_top, HeytingHomClass.toBoundedLatticeHomClass, bihimp_inf_sup, isGreatest_compl, HeytingHomClass.map_bot, bihimp_self, HeytingHomClass.toLatticeHomClass, compl_bihimp_self, gc_inf_himp, bot_himp, ProjectiveSpectrum.basicOpen_zero, compl_sup, sup_bihimp_bihimp, compl_inf_self, TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal, himp_inf_self, le_compl_iff_disjoint_left, Heyting.Regular.coe_lt_coe, sup_himp_self_left, himp_bihimp_eq_inf, disjoint_compl_right, le_compl_comm, Fin.rev_last_eq_bot, AlgebraicGeometry.Proj.basicOpen_zero, toDual_bihimp, Heyting.Regular.toRegular_coe, sup_inf_bihimp, ofDual_symmDiff, le_compl_compl, himp_self, map_bihimp, HeytingHom.map_bot', le_compl_iff_disjoint_right, compl_top, bot_bihimp, himp_bihimp, Heyting.Regular.coe_sup, HeytingAlgebra.himp_bot, HeytingHom.toFun_eq_coe, AlgebraicGeometry.Scheme.basicOpen_zero, iInf_eq_bot, sup_himp_bihimp, AlgebraicGeometry.isAffineOpen_bot, HeytAlg.Iso.mk_hom, iInfβ‚‚_eq_bot, top_himp, le_himp, Heyting.isRegular_bot, AlgebraicGeometry.basicOpen_eq_bot_iff, bihimp_fst, AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_of_isNilpotent, bihimp_isCommutative, Heyting.IsRegular.disjoint_compl_left_iff, BiheytingAlgebra.top_sdiff, sup_himp_distrib, AlgebraicGeometry.Scheme.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, bihimp_hnot_self, bihimp_top, TopologicalSpace.Opens.not_nonempty_iff_eq_bot, bihimp_snd, Heyting.IsRegular.inf, inf_himp_le, BiheytingAlgebra.sdiff_le_iff, Fin.rev_bot, le_bihimp_iff, bihimp_eq_top, bihimp_bot, sInf_eq_bot, inf_compl_eq_bot, TopCat.Presheaf.isSheaf_iff_isTerminal_of_indiscrete, compl_bot, PrimeSpectrum.basicOpen_eq_bot_iff, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot_of_isCompact
toOrderTop πŸ“–CompOp
9 mathmath: himp_top, top_bihimp, himp_eq_top_iff, bihimp_self, himp_self, top_himp, BiheytingAlgebra.top_sdiff, bihimp_top, bihimp_eq_top

Theorems

NameKindAssumesProvesValidatesDepends On
le_himp_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
toLattice
HImp.himp
toHImp
SemilatticeInf.toMin
Lattice.inf
Lattice.inf_le_left
Lattice.inf_le_right
Lattice.le_inf
β€”β€”

HeytingAlgebra

Definitions

NameCategoryTheorems
ofCompl πŸ“–CompOpβ€”
ofHImp πŸ“–CompOpβ€”
toBoundedOrder πŸ“–CompOp
8 mathmath: Heyting.isRegular_top, HeytAlg.hasForgetToLat_forgetβ‚‚_map, Heyting.Regular.coe_top, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_isBoundedOrder, HeytingHomClass.toBoundedLatticeHomClass, bot_himp, compl_top, compl_bot
toCompl πŸ“–CompOp
61 mathmath: Heyting.isRegular_top, lt_compl_self, sup_compl_le_himp, himp_bot, ofDual_hnot, compl_le_compl, compl_compl_compl, compl_sup_compl_le, compl_anti, Heyting.Regular.coe_sdiff, himp_compl, disjoint_compl_compl_left_iff, compl_inf_eq_bot, compl_eq_sSup_disjoint, disjoint_compl_left, disjoint_compl_compl_right_iff, toDual_compl, compl_sup_le_himp, le_compl_self, ofDual_compl, Disjoint.le_compl_right, le_compl_iff_le_compl, toDual_hnot, IsCompl.compl_eq, inf_compl_self, Heyting.Regular.prop, Heyting.isRegular_compl, map_compl, compl_compl_himp_distrib, compl_le_himp, Heyting.Regular.coe_toRegular, compl_compl_inf_distrib, compl_sup_distrib, isGreatest_compl, compl_bihimp_self, himp_compl_comm, compl_sup, compl_inf_self, le_compl_iff_disjoint_left, Disjoint.le_compl_left, LE.le.disjoint_compl_right, disjoint_compl_right, le_compl_comm, compl_le_hnot, le_compl_compl, le_compl_iff_disjoint_right, compl_top, bot_bihimp, Heyting.Regular.coe_sup, himp_bot, Heyting.isRegular_bot, PUnit.compl_eq, bihimp_hnot_self, SimpleGraph.Finsubgraph.coe_compl, IsCompl.eq_compl, bihimp_bot, inf_compl_eq_bot, compl_unique, compl_bot, LE.le.disjoint_compl_left, Heyting.Regular.coe_compl
toGeneralizedHeytingAlgebra πŸ“–CompOp
113 mathmath: HeytingHomClass.map_himp, Heyting.isRegular_top, Nucleus.himp_apply, lt_compl_self, HeytAlg.hasForgetToLat_forgetβ‚‚_map, Nucleus.map_himp_apply, AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, AlgebraicGeometry.Scheme.Hom.preimage_bot, sup_compl_le_himp, PUnit.bot_eq, himp_bot, Nucleus.map_himp_le, HeytAlg.Iso.mk_inv, Heyting.IsRegular.disjoint_compl_right_iff, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_str, Heyting.Regular.coe_himp, compl_sup_compl_le, Fin.rev_top, compl_anti, Heyting.Regular.coe_sdiff, himp_iff_imp, himp_compl, disjoint_compl_compl_left_iff, compl_inf_eq_bot, limsup_eq_bot, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, Heyting.Regular.coe_le_coe, PrimeSpectrum.basicOpen_zero, disjoint_compl_left, disjoint_compl_compl_right_iff, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty, Heyting.Regular.coe_inf, compl_sup_le_himp, MeasureTheory.Content.innerContent_bot, le_compl_self, Heyting.Regular.coe_bot, le_compl_iff_le_compl, AlgebraicGeometry.LocallyRingedSpace.basicOpen_zero, Sublocale.himp_mem', AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot, AlgebraicGeometry.Scheme.instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensBot, Fin.bot_eq_zero, HeytingHom.map_himp', inf_compl_self, Heyting.Regular.coe_top, Sublocale.coe_himp, Sublocale.himp_mem, HeytingHom.toFun_eq_coe_aux, compl_compl_himp_distrib, compl_le_himp, Heyting.Regular.coe_toRegular, compl_compl_inf_distrib, compl_sup_distrib, TopologicalSpace.Opens.eq_bot_or_top, HeytingHomClass.toBoundedLatticeHomClass, isGreatest_compl, HeytingHomClass.map_bot, HeytingHomClass.toLatticeHomClass, compl_bihimp_self, bot_himp, himp_compl_comm, ProjectiveSpectrum.basicOpen_zero, compl_sup, compl_inf_self, BiheytingHom.map_himp', TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal, le_compl_iff_disjoint_left, himp_iInf_eq, Heyting.Regular.coe_lt_coe, himp_le_iff, iSup_himp_eq, PUnit.himp_eq, disjoint_compl_right, le_compl_comm, Fin.rev_last_eq_bot, AlgebraicGeometry.Proj.basicOpen_zero, Heyting.Regular.toRegular_coe, le_compl_compl, map_bihimp, HeytingHom.map_bot', SimpleGraph.Finsubgraph.coe_himp, le_compl_iff_disjoint_right, compl_top, bot_bihimp, Heyting.Regular.coe_sup, himp_bot, HeytingHom.toFun_eq_coe, AlgebraicGeometry.Scheme.basicOpen_zero, iInf_eq_bot, AlgebraicGeometry.isAffineOpen_bot, HeytAlg.Iso.mk_hom, iInfβ‚‚_eq_bot, Heyting.isRegular_bot, AlgebraicGeometry.basicOpen_eq_bot_iff, AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_of_isNilpotent, Heyting.IsRegular.disjoint_compl_left_iff, BiheytingAlgebra.top_sdiff, AlgebraicGeometry.Scheme.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, bihimp_hnot_self, TopologicalSpace.Opens.not_nonempty_iff_eq_bot, Heyting.IsRegular.inf, BiheytingAlgebra.sdiff_le_iff, Fin.rev_bot, bihimp_bot, sInf_eq_bot, inf_compl_eq_bot, TopCat.Presheaf.isSheaf_iff_isTerminal_of_indiscrete, compl_bot, Heyting.IsRegular.himp, PrimeSpectrum.basicOpen_eq_bot_iff, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot_of_isCompact, BiheytingHomClass.map_himp, himp_eq_sSup
toOrderBot πŸ“–CompOp
551 mathmath: IsLocalization.AtPrime.coe_primeSpectrumOrderIso_symm_apply_asIdeal, Set.Finite.t2_separation, Set.pairwiseDisjoint_range_iff, Matroid.exists_isBasis_disjoint_isBasis_of_subset, Metric.ball_disjoint_ball, Set.pairwise_disjoint_Ioc_zpow, Set.pairwiseDisjoint_pair_insert, Set.pairwise_disjoint_Ioo_add_zsmul, Metric.disjoint_ball_infDist, Set.disjoint_ordT5Nhd, LocalizedModule.subsingleton_iff_disjoint, Finpartition.isPartition_parts, AlgebraicGeometry.Scheme.isEmpty_pullback_iff, Sym2.disjoint_diagSet_fromRel, Set.disjoint_compl_left_iff_subset, SimpleGraph.isBipartiteWith_neighborSet_disjoint, SeparatedNhds.disjoint, PrimeSpectrum.localization_specComap_range, Set.pairwise_disjoint_Ico_zsmul, disjoint_or_subset_of_isClopen, BoxIntegral.Box.disjoint_splitCenterBox, lt_compl_self, Matroid.isBase_compl_iff_maximal_disjoint_isBase, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, MeasureTheory.exists_decomposition_of_monotoneOn_hasDerivWithinAt, Set.pairwise_disjoint_Ioo_mul_zpow, Disjoint.of_spanβ‚€, MeasureTheory.IsSetSemiring.pairwiseDisjoint_insert_disjointOfDiff, AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, AlgebraicGeometry.Scheme.Hom.preimage_bot, UpperSet.sdiff_eq_left, IsCompl.bihimp_eq_bot, MeasureTheory.pairwise_disjoint_fundamentalInterior, PUnit.bot_eq, SeparatedNhds.disjoint_closure_left, Set.Iio_disjoint_Ioi_of_not_lt, Finset.disjoint_coe, Finset.pairwiseDisjoint_coe, Set.disjoint_of_subset_iff_left_eq_empty, MeasureTheory.SeparableSpace.exists_measurable_partition_diam_le, IsUltrametricDist.ball_subset_trichotomy, Matroid.IsBasis.contract_dep_iff, BoxIntegral.Prepartition.isPartitionDisjUnionOfEqDiff, SimpleGraph.ComponentCompl.disjoint_right, LowerSet.disjoint_coe, AddAction.orbit.pairwiseDisjoint, EMetric.ball_disjoint, Topology.RelCWComplex.pairwiseDisjoint', Matroid.contract_isCocircuit_iff, Finset.compl_inf, BoxIntegral.Box.disjoint_withBotCoe, Antitone.pairwise_disjoint_on_Ioc_pred, Topology.RelCWComplex.disjoint_openCell_of_ne, IsCompact.separation_of_notMem, Finset.isWF_sup, AddAction.IsBlock.disjoint_vadd_left, himp_bot, OrderedFinpartition.disjoint, sSup_disjoint_iff, Set.Iio_disjoint_Ioi_iff, exists_partition_approximatesLinearOn_of_hasFDerivWithinAt, exists_dist_slope_lt_pairwiseDisjoint_hasSum, Besicovitch.exist_disjoint_covering_families, IsLocalization.coe_primeSpectrumOrderIso_symm_apply_asIdeal, MeasureTheory.exists_null_pairwise_disjoint_diff, pairwise_disjoint_fiber, Finset.compl_sup, Matroid.IsBasis.contract_indep_iff, separated_by_continuous, Antitone.pairwise_disjoint_on_Ioo_pred, Perfect.small_diam_splitting, SimpleGraph.ComponentCompl.pairwise_disjoint, Set.Iic_disjoint_Ioi, disjoint_compl_right_iff, Set.disjoint_pi_univ_Ioc_update_left_right, SetRel.prod_comp_prod, disjoint_nested_nhds_of_not_inseparable, IsLocalization.AtPrime.coe_orderIsoOfPrime_symm_apply_coe, Set.disjoint_image_left, exists_disjoint_vadd_of_isCompact, MulAction.IsBlock.disjoint_smul_of_ne, Heyting.IsRegular.disjoint_compl_right_iff, Disjoint.of_span, Matroid.IsMinor.exists_eq_contract_delete_disjoint, isEmbedding_sumElim, Matroid.delete_eq_self_iff, MulAction.isBlock_iff_smul_eq_or_disjoint, disjoint_interior_frontier, Matroid.contract_eq_self_iff, Finset.sup_set_eq_biUnion, AlgebraicIndependent.adjoin_iff_disjoint, MeasureTheory.IsSetSemiring.disjointOfUnion_props, Set.pairwise_disjoint_Ioc_zsmul, isCoatom_compl, Set.subset_compl_iff_disjoint_right, Set.Ioc_disjoint_Ioc, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, UpperSet.codisjoint_coe, Matroid.Coindep.delete_spanning_iff, Monotone.pairwise_disjoint_on_Ioc_pred, Set.disjoint_right_ordSeparatingSet, LowerSet.sdiff_eq_left, Antitone.pairwise_disjoint_on_Ioo_succ, Fin.Embedding.exists_embedding_disjoint_range_of_add_le_Nat_card, Set.disjoint_sdiff_inter, Fin.rev_top, Set.pairwise_disjoint_Ioo_add_intCast, Set.pairwise_disjoint_vadd_iff, Set.disjoint_iUnion_left, HasSubset.Subset.disjoint_compl_right, disjoint_compl_compl_left_iff, Set.definable_finset_sup, disjoint_of_sSup_disjoint, MeasureTheory.disjoint_addFundamentalInterior_addFundamentalFrontier, Set.PairwiseDisjoint.exists_mem_filter, NonarchimedeanGroup.exists_openSubgroup_separating, Subgroup.leftCoset_cover_filter_FiniteIndex_aux, Finset.inf_himp_right, SimpleGraph.edgeSet_eq_iff, Ideal.disjoint_powers_iff_notMem, Matroid.Indep.contract_dep_iff, Set.pairwise_disjoint_Ioc_add_zsmul, SimpleGraph.disjoint_edge, MeasureTheory.IsSetSemiring.mem_supClosure_iff, compl_inf_eq_bot, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_F, disjoint_nhdsSet_principal, Set.disjoint_powerset_insert, Subgroup.pairwiseDisjoint_leftCoset_cover_const_of_index_eq, MulAction.disjoint_image_image_iff, t2_separation_nhds, Set.disjoint_toFinset, limsup_eq_bot, SimpleGraph.disjoint_edgeFinset, Setoid.IsPartition.finpartition_parts, Set.disjoint_smul_set, AddAction.IsBlock.disjoint_vadd_vadd_set, Set.pairwise_disjoint_Ioc_mul_zpow, Set.pairwise_disjoint_Ico_mul_zpow, Filter.disjoint_iff, Ideal.disjoint_map_primeCompl_iff_comap_le, AddAction.IsBlock.vadd_eq_vadd_or_disjoint, not_disjoint_segment_convexHull_triple, compl_eq_sSup_disjoint, Set.disjoint_sUnion_left, NonarchimedeanAddGroup.exists_openAddSubgroup_separating, TopologicalSpace.Clopens.coe_disjoint, MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion, LowerSet.sdiff_lt_left, SimpleGraph.disjoint_edgeSet, Ideal.disjoint_nonZeroDivisors_of_mem_minimalPrimes, Besicovitch.exist_finset_disjoint_balls_large_measure, isInducing_sumElim, PrimeSpectrum.basicOpen_zero, disjoint_iSup_iff, Set.Ioi_disjoint_Iio_iff, Matroid.dual_indep_iff_exists', MeasureTheory.IsSetSemiring.exists_disjoint_finset_diff_eq, Besicovitch.exists_disjoint_closedBall_covering_ae_of_finiteMeasure_aux, MeasureTheory.disjoint_fundamentalInterior_fundamentalFrontier, AddAction.IsBlock.pairwiseDisjoint_range_vadd, disjoint_compl_left, Set.pairwise_disjoint_Ico_add_intCast, Set.isAtom_singleton, Set.PairwiseDisjoint.exists_mem_filter_basis, MeasureTheory.IsSetSemiring.disjoint_sUnion_disjointOfDiffUnion, MulAction.orbit.eq_or_disjoint, Topology.IsInducing.disjoint_of_sumElim_aux, disjoint_compl_compl_right_iff, Set.subset_diff, separated_by_isOpenEmbedding, Setoid.eqv_classes_disjoint, IsLocalization.isPrime_iff_isPrime_disjoint, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty, SubMulAction.disjoint_val_image, AddAction.IsBlock.disjoint_vadd_set_vadd, Metric.disjoint_closedEBall_of_lt_infEDist, exists_nhds_disjoint_closure, TopologicalSpace.Opens.coe_finset_sup, SimpleGraph.EdgeLabeling.pairwise_disjoint_labelGraph, isNowhereDense_iff_disjoint, ConvexCone.disjoint_hull_left_of_convex, EisensteinSeries.pairwise_disjoint_gammaSet, Fin.Embedding.exists_embedding_disjoint_range_of_add_le_ENat_card, MulAction.IsBlock.disjoint_smul_right, BoxIntegral.unitPartition.disjoint, MeasureTheory.Content.innerContent_bot, MulAction.IsBlock.disjoint_smul_smul_set, AlgebraicGeometry.disjoint_opensRange_sigmaΞΉ, Set.pairwiseDisjoint_prod_left, le_compl_self, Set.disjoint_iUnion_right, LowerSet.disjoint_prod, exists_open_nhds_disjoint_closure, disjoint_measurableAtom_of_notMem, MeasureTheory.disjoint_cylinder_iff, NFA.disjoint_evalFrom_reverse_iff, Matroid.contract_spanning_iff, Set.disjoint_prod, Heyting.Regular.coe_bot, Topology.CWComplex.pairwiseDisjoint', MulAction.IsBlock.disjoint_smul_set_smul, Set.indicator_eq_zero', Geometry.SimplicialComplex.disjoint_or_exists_inter_eq_convexHull, MeasureTheory.IsSetSemiring.pairwiseDisjoint_disjointOfUnion_of_mem, disjoint_frontier_iff_isOpen, AlgebraicGeometry.LocallyRingedSpace.basicOpen_zero, Vitali.exists_disjoint_subfamily_covering_enlargement_closedBall, MeasureTheory.IsSetSemiring.pairwiseDisjoint_biUnion_disjointOfUnion, IsGenericPoint.disjoint_iff, Set.disjoint_image_iff, AddAction.IsBlock.disjoint_vadd_right, iSup_disjoint_iff, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot, Set.disjoint_pi, MeasureTheory.IsSetSemiring.diff_eq_sUnion', Antitone.pairwise_disjoint_on_Ioc_succ, AlgebraicGeometry.Scheme.instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensBot, Set.indicator_eq_zero, TopologicalSpace.Clopens.exists_finset_eq_sup_prod, exists_seq_infinite_isOpen_pairwise_disjoint, disjoint_of_sSup_disjoint_of_le_of_le, Set.disjoint_iUnionβ‚‚_right, IsUltrametricDist.ball_eq_or_disjoint, Filter.HasBasis.disjoint_iff, BooleanSubalgebra.mem_closure_iff_sup_sdiff, AddAction.isBlock_iff_vadd_eq_or_disjoint, Set.exists_union_disjoint_cardinal_eq_of_even, SimpleGraph.pairwise_disjoint_supp_connectedComponent, IsRetrocompact.finsetSup, Set.Ioi_disjoint_Iio_of_le, BoxIntegral.Prepartition.pairwiseDisjoint, Set.disjoint_compl_right_iff_subset, Set.pairwise_disjoint_Ioo_zpow, Metric.ball_disjoint_closedBall, Matroid.IsCircuit.disjoint_coloops, Set.disjoint_image_image, UpperSet.lt_sdiff_left, Subgroup.IsComplement.pairwiseDisjoint_smul, Function.disjoint_mulSupport_iff, SimpleGraph.compl_neighborSet_disjoint, Fin.bot_eq_zero, VitaliFamily.FineSubfamilyOn.covering_disjoint_subtype, Finset.intervalGapsWithin_pairwiseDisjoint_Ioc, inf_compl_self, SimpleGraph.EdgeLabeling.pairwiseDisjoint_univ_labelGraph, MulAction.IsBlock.smul_eq_smul_or_disjoint, ConvexCone.disjoint_coe, TopologicalSpace.Compacts.coe_finset_sup, Filter.disjoint_principal_principal, iSupβ‚‚_disjoint_iff, connectedComponent_disjoint, AddAction.IsBlock.disjoint_vadd_of_ne, Set.zero_mem_neg_add_iff, Set.pairwise_disjoint_Ioc_intCast, Set.subset_compl_iff_disjoint_left, ProperlyDiscontinuousSMul.exists_nhds_disjoint_image, Topology.RelCWComplex.disjoint_interior_base_closedCell, Set.Iic_disjoint_Ioc, Prop.isAtom_iff, SimpleGraph.IsBipartiteWith.disjoint, SeparatedNhds.disjoint_closure_right, Set.Ioc_disjoint_Ioi, disjoint_compl_left_iff, VitaliFamily.FineSubfamilyOn.exists_disjoint_covering_ae, Set.pairwise_disjoint_Ioo_zsmul, Set.Iic_disjoint_Ici, Set.isAtom_iff, Pi.support_single_disjoint, HasSubset.Subset.disjoint_compl_left, disjoint_ball_closedBall_iff, SimpleGraph.fromEdgeSet_disjoint, SimpleGraph.isBipartiteWith_neighborSet_disjoint', Interval.disjoint_coe, Set.disjoint_image_right, Set.Ioi_disjoint_Iio_of_not_lt, VitaliFamily.covering, Finset.isPWO_sup, Finset.partiallyWellOrderedOn_sup, Function.mulSupport_disjoint_iff, exists_open_convex_of_notMem, SimpleGraph.ComponentCompl.hom_eq_iff_not_disjoint, AddAction.isBlock_iff_disjoint_vadd_of_ne, Vitali.exists_disjoint_subfamily_covering_enlargement, Matroid.coindep_contract_iff, t2_separation_compact_nhds, MeasureTheory.preVariation.sum_le, IndexedPartition.disjoint, TopologicalSpace.Opens.eq_bot_or_top, Set.pairwise_disjoint_Ioc_add_intCast, Set.Ico_disjoint_Ico, AddSubgroup.pairwiseDisjoint_leftCoset_cover_const_of_index_eq, Topology.RelCWComplex.disjointBase, Monotone.pairwise_disjoint_on_Ico_pred, isGreatest_compl, Metric.disjoint_closedBall_of_lt_infDist, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_F, Metric.frontier_thickening_disjoint, MulAction.isBlock_iff_smul_eq_smul_or_disjoint, AddAction.isBlock_iff_pairwiseDisjoint_range_vadd, TopologicalSpace.Closeds.coe_finset_sup, HeytingHomClass.map_bot, Vitali.exists_disjoint_covering_ae, ProperlyDiscontinuousVAdd.exists_nhds_disjoint_image, Monotone.pairwise_disjoint_on_Ioo_succ, disjoint_sSup_iff, Metric.AreSeparated.disjoint, Set.Ioi_disjoint_Iio_same, Set.mulIndicator_eq_one', BoxIntegral.Box.disjoint_coe, MulAction.IsBlock.disjoint_smul_left, Set.Infinite.exists_union_disjoint_cardinal_eq_of_infinite, IsLowerSet.disjoint_upperClosure_left, Function.support_disjoint_iff, MulAction.isBlock_iff_disjoint_smul_of_ne, Besicovitch.exists_disjoint_closedBall_covering_ae, AddSubgroup.IsComplement.pairwiseDisjoint_vadd, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_inv, IsLocalization.orderIsoOfPrime_symm_apply_coe, Matroid.dual_indep_iff_exists, FreeGroup.startsWith.disjoint_iff_ne, Set.disjoint_vadd_set, disjoint_closedBall_closedBall_iff, Set.one_notMem_inv_mul_iff, Set.disjoint_sUnion_right, T2Space.t2, compl_bihimp_self, Set.preimage_eq_empty_iff, bot_himp, AddAction.isBlock_iff_vadd_eq_vadd_or_disjoint, Metric.closedBall_disjoint_ball, TopologicalSpace.Clopens.surjective_finset_sup_prod, IsLocalization.disjoint_comap_iff, ProjectiveSpectrum.basicOpen_zero, AddAction.orbit.eq_or_disjoint, t2Space_iff_nhds, Set.disjoint_image_inl_image_inr, IsLowerSet.disjoint_upperClosure_right, Monotone.pairwise_disjoint_on_Ioo_pred, Set.disjoint_sdiff_left, Set.ncard_union_eq_iff, Monotone.pairwise_disjoint_on_Ioc_succ, Set.pairwise_disjoint_Ico_zpow, compl_inf_self, Matroid.delete_dep_iff, Set.disjoint_preimage_iff, MeasureTheory.exists_subordinate_pairwise_disjoint, TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal, TopologicalSpace.Clopens.coe_finset_sup, Finset.sup_sdiff_left, disjoint_principal_nhdsSet, Matroid.contract_spanning_iff', Set.exists_union_disjoint_cardinal_eq_iff, le_compl_iff_disjoint_left, SimpleGraph.IsCompleteBetween.disjoint, Set.disjoint_sdiff_right, Matroid.Indep.contract_indep_iff, Metric.frontier_cthickening_disjoint, MulAction.orbit.pairwiseDisjoint, Set.Iio_disjoint_Ioi_same, Topology.RelCWComplex.disjoint_skeleton_openCell, RootedTree.subtrees_disjoint, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isoBot, Set.zero_notMem_sub_iff, MeasureTheory.preVariation.exists_Finpartition_sum_ge, Set.one_notMem_div_iff, Metric.eball_disjoint, MeasureTheory.preVariation.exists_Finpartition_sum_gt, MeasureTheory.AEDisjoint.exists_disjoint_diff, disjoint_ball_ball_iff, Set.Finite.disjoint_toFinset, LE.le.disjoint_compl_right, Topology.RelCWComplex.disjointBase', Set.pairwiseDisjoint_range_singleton, TopologicalSpace.Closeds.isAtom_coe, SimpleGraph.disjoint_left, disjoint_memPartition, Subgroup.pairwiseDisjoint_leftCoset_cover_of_sum_inv_index_eq_one, NFA.disjoint_stepSet_reverse, Set.disjoint_diagonal_offDiag, PiNat.disjoint_cylinder_of_longestPrefix_lt, IsUpperSet.disjoint_lowerClosure_left, IsUltrametricDist.closedBall_subset_trichotomy, Set.disjoint_vadd_set_left, SimpleGraph.disjoint_image_val_universalVerts, ConvexCone.disjoint_hull_right_of_convex, disjoint_compl_right, Set.Ioc_disjoint_Ioc_of_le, MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsIn, EMetric.disjoint_closedBall_of_lt_infEdist, Set.pairwiseDisjoint_vadd_iff, Set.mulIndicator_eq_one, Ideal.disjoint_primeCompl_of_liesOver, Fin.rev_last_eq_bot, AlgebraicGeometry.Proj.basicOpen_zero, Composition.disjoint_range, MulAction.IsBlock.pairwiseDisjoint_range_smul, MulAction.isBlock_iff_pairwiseDisjoint_range_smul, isSeparatedMap_iff_nhds, Set.exists_union_disjoint_ncard_eq_of_even, Set.Ici_disjoint_Iic, Topology.RelCWComplex.Subcomplex.disjoint_openCell_subcomplex_of_not_mem, Finset.sup_himp_right, Set.one_mem_div_iff, Matroid.delete_isBasis_iff, HeytingHom.map_bot', Set.pairwise_disjoint_Ico_intCast, le_compl_iff_disjoint_right, compl_top, Set.pairwiseDisjoint_iff, SimpleGraph.disjoint_fromEdgeSet, TopologicalSpace.Opens.coe_disjoint, bot_bihimp, Set.pairwiseDisjoint_fiber, CompleteAtomicBooleanAlgebra.instIsAtomistic, Matroid.IsCircuit.isCocircuit_disjoint_or_nontrivial_inter, PMF.toOuterMeasure_apply_eq_zero_iff, AddAction.disjoint_image_image_iff, himp_bot, DoubleCoset.disjoint_out, AlgebraicGeometry.Scheme.basicOpen_zero, Finset.wellFoundedOn_sup, AddSubgroup.leftCoset_cover_filter_FiniteIndex_aux, Set.disjoint_vadd_set_right, iInf_eq_bot, Set.zero_notMem_neg_add_iff, Set.disjoint_image_inl_range_inr, subsingleton_setOf_mem_iff_pairwise_disjoint, Set.pairwiseDisjoint_image_right_iff, Set.Iio_disjoint_Ici, Topology.RelCWComplex.disjoint_skeletonLT_openCell, MeasureTheory.IsSetSemiring.pairwiseDisjoint_disjointOfDiff, AlgebraicGeometry.isAffineOpen_bot, iInfβ‚‚_eq_bot, ContinuousMap.exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal, Set.pairwise_disjoint_smul_iff, Setoid.IsPartition.pairwiseDisjoint, ModelWithCorners.disjoint_interior_boundary, sSupIndep_iff_pairwiseDisjoint, Set.Ico_disjoint_Ico_same, Finset.inf_sdiff_left, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, Heyting.isRegular_bot, SubAddAction.disjoint_val_image, BoxIntegral.Prepartition.disjoint_coe_of_mem, MeasureTheory.exists_pair_mem_lattice_not_disjoint_vadd, Antitone.pairwise_disjoint_on_Ico_pred, Matroid.Indep.contract_isBase_iff, Pairwise.exists_mem_filter_basis_of_disjoint, Set.pairwiseDisjoint_smul_iff, MulAction.IsBlock.smul_eq_or_disjoint, Set.zero_mem_sub_iff, Set.Ioo_disjoint_Ioo, Perfect.splitting, Metric.sphere_disjoint_ball, AlgebraicGeometry.basicOpen_eq_bot_iff, RealRMK.range_cut_partition, Set.pairwiseDisjoint_image_left_iff, Besicovitch.exists_disjoint_closedBall_covering_ae_aux, Ideal.exists_disjoint_powers_of_span_eq_top, MeasureTheory.pairwise_disjoint_addFundamentalInterior, AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_of_isNilpotent, Topology.RelCWComplex.pairwiseDisjoint, Matroid.Coindep.delete_isBase_iff, Set.disjoint_smul_set_left, disjoint_nhdsWithin_of_mem_discrete, Filter.NeBot.not_disjoint, Set.disjoint_smul_set_right, Matroid.dualIndepMatroid_Indep, PrimeSpectrum.localization_comap_range, IsLocalization.orderIsoOfPrime_apply_coe, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isColimit, MeasurableSpace.disjoint_countablePartition, Heyting.IsRegular.disjoint_compl_left_iff, Set.disjoint_range_inl_image_inr, VitaliFamily.FineSubfamilyOn.covering_disjoint, exists_disjoint_smul_of_isCompact, disjoint_nested_nhds, Matroid.IsBasis'.contract_dep_iff, Matroid.delete_indep_iff, AlgebraicGeometry.Scheme.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, MeasureTheory.IsSetRing.finsetSup_mem, Pairwise.exists_mem_filter_of_disjoint, Set.pairwise_disjoint_Ico_add_zsmul, Set.disjoint_left_ordSeparatingSet, MeasureTheory.IsSetSemiring.exists_finpartition_diff, Matroid.Indep.disjoint_loops, Set.Iio_disjoint_Ioi_of_le, bihimp_hnot_self, Finset.pairwiseDisjoint_pair_insert, Finsupp.disjoint_supported_supported_iff, Set.instIsAtomistic, MeasureTheory.preVariation.sum_le_preVariationFun_of_subset, Urysohns.CU.disjoint_C_support_lim, IsUpperSet.disjoint_lowerClosure_right, TopologicalSpace.Opens.not_nonempty_iff_eq_bot, Order.Ideal.PrimePair.disjoint, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_hom, Disjoint.exists_mem_filter_basis, Finset.sup_himp_left, IsLocalization.map_algebraMap_ne_top_iff_disjoint, iSupIndep_iff_pairwiseDisjoint, SimpleGraph.deleteEdges_eq_self, Matroid.delete_isCircuit_iff, Set.disjoint_iUnionβ‚‚_left, Pi.mulSupport_mulSingle_disjoint, Set.prod_subset_compl_diagonal_iff_disjoint, SimpleGraph.ConnectedComponent.Represents.disjoint_supp_of_notMem, Fin.rev_bot, r1_separation, Finset.sup_id_set_eq_sUnion, bihimp_bot, NumberField.InfinitePlace.disjoint_isReal_isComplex, Vitali.exists_disjoint_covering_ae', AddSubgroup.pairwiseDisjoint_leftCoset_cover_of_sum_neg_index_eq_zero, Matroid.IsBasis'.contract_indep_iff, IsCoatom.of_compl, sInf_eq_bot, disjoint_iSupβ‚‚_iff, inf_compl_eq_bot, MeasureTheory.IsSetSemiring.disjoint_sUnion_disjointOfDiff, disjoint_closedBall_ball_iff, IsLocalization.coe_primeSpectrumOrderIso_apply_coe_asIdeal, IsCoatom.compl, Set.pairwise_disjoint_Ioo_intCast, PiNat.exists_disjoint_cylinder, t2_separation, TopCat.Presheaf.isSheaf_iff_isTerminal_of_indiscrete, TopologicalSpace.IsOpenCover.exists_finite_nonempty_disjoint_clopen_cover, compl_bot, isAtom_compl, NumberField.mixedEmbedding.disjoint_negAt_plusPart, PMF.toMeasure_apply_eq_zero_iff, Set.Ioc_disjoint_Ioi_same, MeasureTheory.IsSetSemiring.pairwiseDisjoint_disjointOfDiffUnion, Topology.RelCWComplex.disjoint_base_iUnion_openCell, AddAction.IsBlock.vadd_eq_or_disjoint, IsUltrametricDist.closedBall_eq_or_disjoint, Concept.disjoint_extent_intent, Function.disjoint_support_iff, PrimeSpectrum.basicOpen_eq_bot_iff, LE.le.disjoint_compl_left, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot_of_isCompact, Set.one_mem_inv_mul_iff, Antitone.pairwise_disjoint_on_Ico_succ, Topology.RelCWComplex.disjoint_interior_base_iUnion_closedCell, Metric.closedBall_disjoint_closedBall, t2Space_iff, Set.disjoint_univ_pi, Set.pairwiseDisjoint_singleton_iff_injOn, Monotone.pairwise_disjoint_on_Ico_succ

Theorems

NameKindAssumesProvesValidatesDepends On
himp_bot πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
toGeneralizedHeytingAlgebra
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
toOrderBot
Compl.compl
toCompl
β€”β€”

IsCompl

Theorems

NameKindAssumesProvesValidatesDepends On
compl_eq πŸ“–mathematicalIsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toBoundedOrder
Compl.compl
HeytingAlgebra.toCompl
β€”LE.le.antisymm'
Disjoint.le_compl_left
disjoint
Disjoint.le_of_codisjoint
disjoint_compl_left
codisjoint
eq_compl πŸ“–mathematicalIsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toBoundedOrder
Compl.compl
HeytingAlgebra.toCompl
β€”LE.le.antisymm
Disjoint.le_compl_right
disjoint
Disjoint.le_of_codisjoint
disjoint_compl_left
Codisjoint.symm
codisjoint
eq_hnot πŸ“–mathematicalIsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toBoundedOrder
HNot.hnot
CoheytingAlgebra.toHNot
β€”LE.le.antisymm'
Codisjoint.hnot_le_left
codisjoint
Disjoint.le_of_codisjoint
disjoint
codisjoint_hnot_right
hnot_eq πŸ“–mathematicalIsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toBoundedOrder
HNot.hnot
CoheytingAlgebra.toHNot
β€”LE.le.antisymm
Codisjoint.hnot_le_right
codisjoint
Disjoint.le_of_codisjoint
Disjoint.symm
disjoint
codisjoint_hnot_right

LE.le

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_hnot_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
Codisjoint
CoheytingAlgebra.toOrderTop
HNot.hnot
CoheytingAlgebra.toHNot
β€”Codisjoint.mono_right
codisjoint_hnot_left
codisjoint_hnot_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
Codisjoint
CoheytingAlgebra.toOrderTop
HNot.hnot
CoheytingAlgebra.toHNot
β€”Codisjoint.mono_left
codisjoint_hnot_right
disjoint_compl_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Disjoint
HeytingAlgebra.toOrderBot
Compl.compl
HeytingAlgebra.toCompl
β€”Disjoint.mono_right
disjoint_compl_left
disjoint_compl_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Disjoint
HeytingAlgebra.toOrderBot
Compl.compl
HeytingAlgebra.toCompl
β€”Disjoint.mono_left
disjoint_compl_right

LinearOrder

Definitions

NameCategoryTheorems
toBiheytingAlgebra πŸ“–CompOpβ€”

OrderDual

Definitions

NameCategoryTheorems
instBiheytingAlgebra πŸ“–CompOpβ€”
instCoheytingAlgebra πŸ“–CompOp
2 mathmath: ofDual_hnot, toDual_compl
instGeneralizedCoheytingAlgebra πŸ“–CompOp
2 mathmath: toDual_bihimp, ofDual_symmDiff
instGeneralizedHeytingAlgebra πŸ“–CompOp
4 mathmath: toDual_sdiff, ofDual_himp, ofDual_bihimp, toDual_symmDiff
instHeytingAlgebra πŸ“–CompOp
2 mathmath: ofDual_compl, toDual_hnot

PUnit

Definitions

NameCategoryTheorems
instBiheytingAlgebra πŸ“–CompOp
17 mathmath: WithBot.orderIsoPUnitSumLex_symm_inl, bot_eq, WithBot.orderIsoPUnitSumLex_symm_inr, WithTop.orderIsoSumLexPUnit_toLex, WithTop.orderIsoSumLexPUnit_symm_inl, WithTop.orderIsoSumLexPUnit_top, hnot_eq, top_eq, WithBot.orderIsoPUnitSumLex_toLex, sdiff_eq, himp_eq, sup_eq, WithTop.orderIsoSumLexPUnit_symm_inr, instWellFoundedGTUnit, compl_eq, inf_eq, WithBot.orderIsoPUnitSumLex_bot

Theorems

NameKindAssumesProvesValidatesDepends On
bot_eq πŸ“–mathematicalβ€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
BiheytingAlgebra.toHeytingAlgebra
instBiheytingAlgebra
HeytingAlgebra.toOrderBot
β€”β€”
compl_eq πŸ“–mathematicalβ€”Compl.compl
HeytingAlgebra.toCompl
BiheytingAlgebra.toHeytingAlgebra
instBiheytingAlgebra
β€”β€”
himp_eq πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
BiheytingAlgebra.toHeytingAlgebra
instBiheytingAlgebra
β€”β€”
hnot_eq πŸ“–mathematicalβ€”HNot.hnot
BiheytingAlgebra.toHNot
instBiheytingAlgebra
β€”β€”
inf_eq πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
instBiheytingAlgebra
β€”β€”
sdiff_eq πŸ“–mathematicalβ€”BiheytingAlgebra.toSDiff
instBiheytingAlgebra
β€”β€”
sup_eq πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
instBiheytingAlgebra
β€”β€”
top_eq πŸ“–mathematicalβ€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
instBiheytingAlgebra
CoheytingAlgebra.toOrderTop
β€”β€”

Pi

Definitions

NameCategoryTheorems
instBiheytingAlgebra πŸ“–CompOpβ€”
instCoheytingAlgebra πŸ“–CompOpβ€”
instGeneralizedCoheytingAlgebra πŸ“–CompOpβ€”
instGeneralizedHeytingAlgebra πŸ“–CompOpβ€”
instHImpForall πŸ“–CompOp
4 mathmath: himp_apply, bihimp_apply, bihimp_def, himp_def
instHNotForall πŸ“–CompOp
2 mathmath: hnot_def, hnot_apply
instHeytingAlgebra πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
himp_apply πŸ“–mathematicalβ€”HImp.himp
instHImpForall
β€”β€”
himp_def πŸ“–mathematicalβ€”HImp.himp
instHImpForall
β€”β€”
hnot_apply πŸ“–mathematicalβ€”HNot.hnot
instHNotForall
β€”β€”
hnot_def πŸ“–mathematicalβ€”HNot.hnot
instHNotForall
β€”β€”

Prod

Definitions

NameCategoryTheorems
instBiheytingAlgebra πŸ“–CompOpβ€”
instCoheytingAlgebra πŸ“–CompOpβ€”
instCompl πŸ“–CompOp
2 mathmath: snd_compl, fst_compl
instGeneralizedCoheytingAlgebra πŸ“–CompOpβ€”
instGeneralizedHeytingAlgebra πŸ“–CompOpβ€”
instHImp πŸ“–CompOp
4 mathmath: snd_himp, fst_himp, bihimp_fst, bihimp_snd
instHNot πŸ“–CompOp
2 mathmath: snd_hnot, fst_hnot
instHeytingAlgebra πŸ“–CompOpβ€”
instSDiff πŸ“–CompOp
4 mathmath: symmDiff_fst, symmDiff_snd, snd_sdiff, fst_sdiff

Prop

Definitions

NameCategoryTheorems
instHeytingAlgebra πŸ“–CompOp
2 mathmath: himp_iff_imp, isAtom_iff

(root)

Definitions

NameCategoryTheorems
BiheytingAlgebra πŸ“–CompDataβ€”
CoheytingAlgebra πŸ“–CompDataβ€”
GeneralizedCoheytingAlgebra πŸ“–CompDataβ€”
GeneralizedHeytingAlgebra πŸ“–CompDataβ€”
HeytingAlgebra πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_himp πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toOrderBot
Top.top
OrderTop.toTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderTop
HeytingAlgebra.toBoundedOrder
β€”himp_eq_top_iff
bot_le
bot_sdiff πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
β€”sdiff_eq_bot_iff
bot_le
codisjoint_hnot_hnot_left_iff πŸ“–mathematicalβ€”Codisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
HNot.hnot
CoheytingAlgebra.toHNot
β€”hnot_hnot_hnot
codisjoint_hnot_hnot_right_iff πŸ“–mathematicalβ€”Codisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
HNot.hnot
CoheytingAlgebra.toHNot
β€”hnot_hnot_hnot
codisjoint_hnot_left πŸ“–mathematicalβ€”Codisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
HNot.hnot
CoheytingAlgebra.toHNot
β€”Codisjoint.symm
codisjoint_hnot_right
codisjoint_hnot_right πŸ“–mathematicalβ€”Codisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
HNot.hnot
CoheytingAlgebra.toHNot
β€”codisjoint_iff_le_sup
sdiff_le_iff
Eq.le
top_sdiff'
compl_anti πŸ“–mathematicalβ€”Antitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
β€”le_compl_comm
LE.le.trans
le_compl_compl
compl_bot πŸ“–mathematicalβ€”Compl.compl
HeytingAlgebra.toCompl
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toOrderBot
Top.top
OrderTop.toTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderTop
HeytingAlgebra.toBoundedOrder
β€”himp_bot
himp_self
compl_compl_compl πŸ“–mathematicalβ€”Compl.compl
HeytingAlgebra.toCompl
β€”LE.le.antisymm
compl_anti
le_compl_compl
compl_compl_himp_distrib πŸ“–mathematicalβ€”Compl.compl
HeytingAlgebra.toCompl
HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
β€”le_antisymm
le_himp_iff
compl_compl_inf_distrib
compl_anti
himp_inf_le
le_compl_comm
LE.le.trans
compl_sup_le_himp
compl_sup_distrib
le_compl_iff_disjoint_right
disjoint_right_comm
inf_himp_le
compl_compl_inf_distrib πŸ“–mathematicalβ€”Compl.compl
HeytingAlgebra.toCompl
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
β€”LE.le.antisymm
LE.le.trans
compl_anti
compl_sup_compl_le
Eq.le
compl_sup_distrib
le_compl_iff_disjoint_right
disjoint_assoc
disjoint_compl_compl_left_iff
disjoint_left_comm
inf_comm
disjoint_compl_right
compl_iff_not πŸ“–mathematicalβ€”Compl.compl
Prop.instCompl
β€”β€”
compl_inf_eq_bot πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”compl_inf_self
compl_inf_self πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”Disjoint.eq_bot
disjoint_compl_left
compl_le_compl πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
β€”compl_anti
compl_le_himp πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”LE.le.trans
Eq.ge
himp_bot
himp_le_himp_left
bot_le
compl_le_hnot πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
BiheytingAlgebra.toHeytingAlgebra
HNot.hnot
BiheytingAlgebra.toHNot
β€”Disjoint.le_of_codisjoint
disjoint_compl_left
codisjoint_hnot_right
compl_ne_self πŸ“–β€”β€”β€”β€”ne_compl_self
compl_sup πŸ“–mathematicalβ€”Compl.compl
HeytingAlgebra.toCompl
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”compl_sup_distrib
compl_sup_compl_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Compl.compl
HeytingAlgebra.toCompl
SemilatticeInf.toMin
β€”sup_le
compl_anti
inf_le_left
inf_le_right
compl_sup_distrib πŸ“–mathematicalβ€”Compl.compl
HeytingAlgebra.toCompl
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”sup_himp_distrib
compl_sup_le_himp πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Compl.compl
HeytingAlgebra.toCompl
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”sup_le
compl_le_himp
le_himp
compl_top πŸ“–mathematicalβ€”Compl.compl
HeytingAlgebra.toCompl
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
BoundedOrder.toOrderTop
HeytingAlgebra.toBoundedOrder
Bot.bot
OrderBot.toBot
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”eq_of_forall_le_iff
le_compl_iff_disjoint_right
disjoint_top
le_bot_iff
compl_unique πŸ“–mathematicalSemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
SemilatticeSup.toMax
Top.top
OrderTop.toTop
SemilatticeInf.toPartialOrder
BoundedOrder.toOrderTop
HeytingAlgebra.toBoundedOrder
Compl.compl
HeytingAlgebra.toCompl
β€”IsCompl.compl_eq
IsCompl.of_eq
disjoint_compl_compl_left_iff πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toOrderBot
Compl.compl
HeytingAlgebra.toCompl
β€”compl_compl_compl
disjoint_compl_compl_right_iff πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toOrderBot
Compl.compl
HeytingAlgebra.toCompl
β€”compl_compl_compl
disjoint_compl_left πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toOrderBot
Compl.compl
HeytingAlgebra.toCompl
β€”disjoint_iff_inf_le
le_himp_iff
Eq.ge
himp_bot
disjoint_compl_right πŸ“–mathematicalβ€”Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toOrderBot
Compl.compl
HeytingAlgebra.toCompl
β€”Disjoint.symm
disjoint_compl_left
fst_compl πŸ“–mathematicalβ€”Compl.compl
Prod.instCompl
β€”β€”
fst_himp πŸ“–mathematicalβ€”HImp.himp
Prod.instHImp
β€”β€”
fst_hnot πŸ“–mathematicalβ€”HNot.hnot
Prod.instHNot
β€”β€”
fst_sdiff πŸ“–mathematicalβ€”Prod.instSDiffβ€”β€”
gc_inf_himp πŸ“–mathematicalβ€”GaloisConnection
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff'
gc_sdiff_sup πŸ“–mathematicalβ€”GaloisConnection
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sdiff_le_iff
himp_bot πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toOrderBot
Compl.compl
HeytingAlgebra.toCompl
β€”HeytingAlgebra.himp_bot
himp_compl πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
β€”himp_bot
himp_himp
inf_idem
himp_compl_comm πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
β€”himp_left_comm
himp_eq_himp_iff πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”inf_of_le_right
himp_eq_top_iff πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”top_le_iff
le_himp_iff
top_inf_eq
himp_himp πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
β€”eq_of_forall_le_iff
inf_assoc
himp_idem πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”himp_himp
inf_idem
himp_iff_imp πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
Prop.instHeytingAlgebra
β€”β€”
himp_inf_distrib πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
β€”eq_of_forall_le_iff
himp_inf_himp_cancel πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”LE.le.antisymm
himp_triangle
le_inf
himp_le_himp_left
himp_le_himp_right
himp_inf_himp_inf_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”himp_le_himp_himp_himp
himp_inf_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff
le_rfl
himp_inf_self πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”inf_comm
inf_himp
himp_le_himp πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”LE.le.trans
himp_le_himp_right
himp_le_himp_left
himp_le_himp_himp_himp πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff
inf_assoc
himp_inf_self
inf_le_left
himp_le_himp_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff
LE.le.trans
himp_inf_le
himp_le_himp_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff
LE.le.trans
inf_le_inf_left
himp_inf_le
himp_left_comm πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”himp_himp
inf_comm
himp_ne_himp_iff πŸ“–β€”β€”β€”β€”Iff.not
himp_eq_himp_iff
himp_self πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
β€”top_le_iff
le_himp_iff
inf_le_right
himp_top πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
β€”himp_eq_top_iff
le_top
himp_triangle πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff
inf_right_comm
LE.le.trans
himp_inf_le
le_himp_himp
hnot_anti πŸ“–mathematicalβ€”Antitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
β€”hnot_le_comm
LE.le.trans
hnot_hnot_le
hnot_bot πŸ“–mathematicalβ€”HNot.hnot
CoheytingAlgebra.toHNot
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BoundedOrder.toOrderBot
CoheytingAlgebra.toBoundedOrder
Top.top
OrderTop.toTop
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CoheytingAlgebra.toOrderTop
β€”eq_of_forall_ge_iff
hnot_le_iff_codisjoint_left
codisjoint_bot
top_le_iff
hnot_hnot_hnot πŸ“–mathematicalβ€”HNot.hnot
CoheytingAlgebra.toHNot
β€”LE.le.antisymm
hnot_hnot_le
hnot_anti
hnot_hnot_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
β€”Codisjoint.hnot_le_left
codisjoint_hnot_right
hnot_hnot_sdiff_distrib πŸ“–mathematicalβ€”HNot.hnot
CoheytingAlgebra.toHNot
GeneralizedCoheytingAlgebra.toSDiff
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
β€”le_antisymm
hnot_le_comm
LE.le.trans'
hnot_anti
sdiff_le_inf_hnot
hnot_inf_distrib
hnot_le_iff_codisjoint_right
codisjoint_left_comm
le_sdiff_sup
sdiff_le_iff
hnot_hnot_sup_distrib
le_sup_sdiff
hnot_hnot_sup_distrib πŸ“–mathematicalβ€”HNot.hnot
CoheytingAlgebra.toHNot
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
β€”LE.le.antisymm'
LE.le.trans
Eq.ge
hnot_inf_distrib
hnot_anti
le_hnot_inf_hnot
hnot_le_iff_codisjoint_left
codisjoint_assoc
codisjoint_hnot_hnot_left_iff
codisjoint_left_comm
sup_comm
codisjoint_hnot_right
hnot_inf_distrib πŸ“–mathematicalβ€”HNot.hnot
CoheytingAlgebra.toHNot
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sdiff_inf_distrib
hnot_le_comm πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
β€”hnot_le_iff_codisjoint_right
hnot_le_iff_codisjoint_left
hnot_le_hnot πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
β€”hnot_anti
hnot_le_iff_codisjoint_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
Codisjoint
CoheytingAlgebra.toOrderTop
β€”hnot_le_iff_codisjoint_right
codisjoint_comm
hnot_le_iff_codisjoint_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
Codisjoint
CoheytingAlgebra.toOrderTop
β€”top_sdiff'
sdiff_le_iff
codisjoint_iff_le_sup
hnot_sdiff πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
β€”top_sdiff'
sdiff_sdiff
sup_idem
hnot_sdiff_comm πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
β€”sdiff_right_comm
hnot_sup_self πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CoheytingAlgebra.toOrderTop
β€”Codisjoint.eq_top
codisjoint_hnot_left
hnot_top πŸ“–mathematicalβ€”HNot.hnot
CoheytingAlgebra.toHNot
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
Bot.bot
OrderBot.toBot
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
CoheytingAlgebra.toBoundedOrder
β€”top_sdiff'
sdiff_self
inf_compl_eq_bot πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”inf_compl_self
inf_compl_self πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”Disjoint.eq_bot
disjoint_compl_right
inf_himp πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_antisymm
le_inf
inf_le_left
inf_comm
le_himp_iff
le_refl
inf_le_inf_left
le_himp
inf_himp_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”inf_comm
le_himp_iff
le_refl
inf_sdiff_left πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”inf_of_le_left
sdiff_le
inf_sdiff_right πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”inf_of_le_right
sdiff_le
inf_sdiff_sup_left πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”inf_of_le_left
LE.le.trans
sdiff_le
le_sup_left
inf_sdiff_sup_right πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”inf_of_le_left
LE.le.trans
sdiff_le
le_sup_right
le_compl_comm πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
β€”le_compl_iff_disjoint_right
le_compl_iff_disjoint_left
le_compl_compl πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
β€”Disjoint.le_compl_right
disjoint_compl_right
le_compl_iff_disjoint_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
Disjoint
HeytingAlgebra.toOrderBot
β€”le_compl_iff_disjoint_right
disjoint_comm
le_compl_iff_disjoint_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
Disjoint
HeytingAlgebra.toOrderBot
β€”himp_bot
le_himp_iff
disjoint_iff_inf_le
le_compl_iff_le_compl πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
β€”le_compl_comm
le_compl_of_le_compl πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
β€”β€”le_compl_comm
le_compl_self πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
Bot.bot
OrderBot.toBot
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”le_compl_iff_disjoint_left
disjoint_self
le_himp πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff
inf_le_left
le_himp_comm πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff
le_himp_iff'
le_himp_himp πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff
inf_himp_le
le_himp_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeInf.toMin
β€”GeneralizedHeytingAlgebra.le_himp_iff
le_himp_iff' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeInf.toMin
β€”le_himp_iff
inf_comm
le_himp_iff_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”le_himp_iff
inf_idem
le_hnot_inf_hnot πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
β€”le_inf
hnot_anti
le_sup_left
le_sup_right
le_sdiff_sup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_comm
sdiff_le_iff
le_refl
le_sup_sdiff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”sdiff_le_iff
le_rfl
le_sup_sdiff_sup_sdiff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”sdiff_sdiff_sdiff_le_sdiff
lt_compl_self πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
Bot.bot
OrderBot.toBot
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
HeytingAlgebra.toOrderBot
β€”lt_iff_le_and_ne
ne_compl_self πŸ“–β€”β€”β€”β€”le_compl_self
le_of_eq
compl_bot
ofDual_compl πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
Compl.compl
HeytingAlgebra.toCompl
OrderDual.instHeytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
β€”β€”
ofDual_himp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
HImp.himp
GeneralizedHeytingAlgebra.toHImp
OrderDual.instGeneralizedHeytingAlgebra
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedCoheytingAlgebra.toSDiff
β€”β€”
ofDual_hnot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
HNot.hnot
CoheytingAlgebra.toHNot
OrderDual.instCoheytingAlgebra
Compl.compl
HeytingAlgebra.toCompl
β€”β€”
sdiff_bot πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
β€”eq_of_forall_ge_iff
sdiff_le_iff
bot_sup_eq
sdiff_eq_bot_iff πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”le_bot_iff
sdiff_le_iff
sup_bot_eq
sdiff_eq_sdiff_iff πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiffβ€”sup_of_le_left
sdiff_idem πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiffβ€”sdiff_sdiff_left
sup_idem
sdiff_inf πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sdiff_inf_distrib
sdiff_inf_distrib πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”eq_of_forall_ge_iff
sup_le_iff
sdiff_le_comm
le_inf_iff
sdiff_inf_self_left πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
β€”sdiff_inf
sdiff_self
bot_sup_eq
sdiff_inf_self_right πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
β€”sdiff_inf
sdiff_self
sup_bot_eq
sdiff_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sdiff_le_iff
le_sup_right
sdiff_le_comm πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sdiff_le_iff
sdiff_le_iff'
sdiff_le_hnot πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedCoheytingAlgebra.toSDiff
HNot.hnot
CoheytingAlgebra.toHNot
β€”LE.le.trans_eq
sdiff_le_sdiff_right
le_top
top_sdiff'
sdiff_le_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”GeneralizedCoheytingAlgebra.sdiff_le_iff
sdiff_le_iff' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sdiff_le_iff
sup_comm
sdiff_le_iff_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sdiff_le_iff
sup_idem
sdiff_le_inf_hnot πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeInf.toMin
HNot.hnot
CoheytingAlgebra.toHNot
β€”le_inf
sdiff_le
sdiff_le_hnot
sdiff_le_sdiff πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiffβ€”LE.le.trans
sdiff_le_sdiff_right
sdiff_le_sdiff_left
sdiff_le_sdiff_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiffβ€”sdiff_le_iff
LE.le.trans
le_sup_sdiff
sup_le_sup_right
sdiff_le_sdiff_of_sup_le_sup_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiffβ€”sup_sdiff_left_self
sdiff_le_sdiff_right
sdiff_le_sdiff_of_sup_le_sup_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiffβ€”sup_sdiff_right_self
sdiff_le_sdiff_right
sdiff_le_sdiff_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiffβ€”sdiff_le_iff
LE.le.trans
le_sup_sdiff
sdiff_ne_sdiff_iff πŸ“–β€”β€”β€”β€”Iff.not
sdiff_eq_sdiff_iff
sdiff_right_comm πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiffβ€”sdiff_sdiff
sup_comm
sdiff_sdiff πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
β€”eq_of_forall_ge_iff
sup_assoc
sdiff_sdiff_comm πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiffβ€”sdiff_right_comm
sdiff_sdiff_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sdiff_le_iff
le_sdiff_sup
sdiff_sdiff_left πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
β€”sdiff_sdiff
sdiff_sdiff_sdiff_le_sdiff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sdiff_le_iff
sup_left_comm
sup_sdiff_self
sdiff_sup_self
le_sup_left
sdiff_sdiff_self πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
β€”sdiff_sdiff_comm
sdiff_self
bot_sdiff
sdiff_self πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toOrderBot
β€”le_bot_iff
sdiff_le_iff
le_sup_left
sdiff_sup_cancel πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_comm
sup_sdiff_cancel_right
sdiff_sup_sdiff_cancel πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”LE.le.antisymm'
sdiff_triangle
sup_le
sdiff_le_sdiff_left
sdiff_le_sdiff_right
sdiff_sup_sdiff_cancel' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiffβ€”LE.le.antisymm'
sdiff_triangle
sup_le
sdiff_inf_self_left
sdiff_le_sdiff_left
sup_sdiff_self
sup_comm
sdiff_sup_self πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_comm
sup_sdiff_self
sdiff_top πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toOrderTop
Bot.bot
OrderBot.toBot
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
CoheytingAlgebra.toBoundedOrder
β€”sdiff_eq_bot_iff
le_top
sdiff_triangle πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sdiff_le_iff
sup_left_comm
LE.le.trans
sdiff_sdiff_le
le_sup_sdiff
snd_compl πŸ“–mathematicalβ€”Compl.compl
Prod.instCompl
β€”β€”
snd_himp πŸ“–mathematicalβ€”HImp.himp
Prod.instHImp
β€”β€”
snd_hnot πŸ“–mathematicalβ€”HNot.hnot
Prod.instHNot
β€”β€”
snd_sdiff πŸ“–mathematicalβ€”Prod.instSDiffβ€”β€”
sup_compl_le_himp πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Compl.compl
HeytingAlgebra.toCompl
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”sup_le
le_himp
compl_le_himp
sup_himp_distrib πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”eq_of_forall_le_iff
le_inf_iff
le_himp_comm
sup_le_iff
sup_himp_self_left πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
β€”sup_himp_distrib
himp_self
top_inf_eq
sup_himp_self_right πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
β€”sup_himp_distrib
himp_self
inf_top_eq
sup_hnot_self πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CoheytingAlgebra.toOrderTop
β€”Codisjoint.eq_top
codisjoint_hnot_right
sup_le_of_le_sdiff_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sup_le
LE.le.trans
sdiff_le
sup_le_of_le_sdiff_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sup_le
LE.le.trans
sdiff_le
sup_sdiff πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
β€”sup_sdiff_distrib
sup_sdiff_cancel' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_sdiff_eq_sup
sup_of_le_right
sup_sdiff_cancel_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_sdiff_cancel'
le_rfl
sup_sdiff_distrib πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
β€”eq_of_forall_ge_iff
sup_sdiff_eq_sup πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_congr_left
LE.le.trans
sdiff_le
le_sup_right
le_sup_sdiff
sup_le_sup_right
sup_sdiff_left πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_of_le_left
sdiff_le
sup_sdiff_left_self πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
β€”sup_comm
sup_sdiff_right_self
sup_sdiff_right πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_of_le_right
sdiff_le
sup_sdiff_right_self πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
β€”sup_sdiff
sdiff_self
sup_bot_eq
sup_sdiff_self πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”le_antisymm
sup_le_sup_left
sdiff_le
sup_le
le_sup_left
le_sup_sdiff
sup_sdiff_self_left πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sdiff_sup_self
sup_sdiff_self_right πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedCoheytingAlgebra.toSDiff
β€”sup_sdiff_self
toDual_compl πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Compl.compl
HeytingAlgebra.toCompl
HNot.hnot
CoheytingAlgebra.toHNot
OrderDual.instCoheytingAlgebra
β€”β€”
toDual_hnot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
HNot.hnot
CoheytingAlgebra.toHNot
Compl.compl
HeytingAlgebra.toCompl
OrderDual.instHeytingAlgebra
β€”β€”
toDual_sdiff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
GeneralizedCoheytingAlgebra.toSDiff
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HImp.himp
GeneralizedHeytingAlgebra.toHImp
OrderDual.instGeneralizedHeytingAlgebra
β€”β€”
top_himp πŸ“–mathematicalβ€”HImp.himp
GeneralizedHeytingAlgebra.toHImp
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
GeneralizedHeytingAlgebra.toOrderTop
β€”eq_of_forall_le_iff
le_himp_iff
inf_top_eq
top_sdiff' πŸ“–mathematicalβ€”GeneralizedCoheytingAlgebra.toSDiff
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toOrderTop
HNot.hnot
CoheytingAlgebra.toHNot
β€”CoheytingAlgebra.top_sdiff

---

← Back to Index