Documentation Verification Report

Boundary

πŸ“ Source: Mathlib/Order/Heyting/Boundary.lean

Statistics

MetricCount
Definitionsboundary, Β«termβˆ‚_Β»
2
Theoremsboundary_bot, boundary_eq_bot, boundary_hnot_hnot, boundary_hnot_le, boundary_idem, boundary_inf, boundary_inf_le, boundary_le, boundary_le_boundary_sup_sup_boundary_inf_left, boundary_le_boundary_sup_sup_boundary_inf_right, boundary_le_hnot, boundary_sup_le, boundary_sup_sup_boundary_inf, boundary_top, hnot_boundary, hnot_eq_top_iff_exists_boundary, hnot_hnot_sup_boundary, inf_hnot_self
18
Total20

Coheyting

Definitions

NameCategoryTheorems
boundary πŸ“–CompOp
18 mathmath: boundary_top, boundary_le_hnot, hnot_boundary, hnot_eq_top_iff_exists_boundary, hnot_hnot_sup_boundary, boundary_sup_le, boundary_inf, boundary_hnot_hnot, boundary_eq_bot, inf_hnot_self, boundary_inf_le, boundary_hnot_le, boundary_le_boundary_sup_sup_boundary_inf_left, boundary_le, boundary_idem, boundary_sup_sup_boundary_inf, boundary_bot, boundary_le_boundary_sup_sup_boundary_inf_right

Theorems

NameKindAssumesProvesValidatesDepends On
boundary_bot πŸ“–mathematicalβ€”boundary
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BoundedOrder.toOrderBot
CoheytingAlgebra.toBoundedOrder
β€”bot_inf_eq
boundary_eq_bot πŸ“–mathematicalβ€”boundary
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Bot.bot
BooleanAlgebra.toBot
β€”inf_compl_eq_bot
boundary_hnot_hnot πŸ“–mathematicalβ€”boundary
HNot.hnot
CoheytingAlgebra.toHNot
β€”hnot_hnot_hnot
inf_comm
boundary_hnot_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
boundary
HNot.hnot
CoheytingAlgebra.toHNot
β€”Eq.trans_le
inf_comm
inf_le_inf_right
hnot_hnot_le
boundary_idem πŸ“–mathematicalβ€”boundaryβ€”boundary.eq_1
hnot_boundary
inf_top_eq
boundary_inf πŸ“–mathematicalβ€”boundary
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”hnot_inf_distrib
inf_sup_left
inf_right_comm
inf_assoc
boundary_inf_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
boundary
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”Eq.trans_le
boundary_inf
sup_le_sup
inf_le_left
inf_le_right
boundary_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
boundary
β€”inf_le_left
boundary_le_boundary_sup_sup_boundary_inf_left πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
boundary
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
β€”sup_inf_left
sup_comm
sup_inf_right
sup_right_idem
sup_assoc
le_sup_of_le_left
inf_le_left
inf_le_of_right_le
hnot_le_iff_codisjoint_right
codisjoint_left_comm
codisjoint_hnot_left
le_sup_of_le_right
Codisjoint.mono_right
hnot_anti
codisjoint_hnot_right
boundary_le_boundary_sup_sup_boundary_inf_right πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
boundary
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
β€”sup_comm
inf_comm
boundary_le_boundary_sup_sup_boundary_inf_left
boundary_le_hnot πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
boundary
HNot.hnot
CoheytingAlgebra.toHNot
β€”inf_le_right
boundary_sup_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
boundary
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”boundary.eq_1
inf_sup_right
sup_le_sup
inf_le_inf_left
hnot_anti
le_sup_left
le_sup_right
boundary_sup_sup_boundary_inf πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
boundary
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”le_antisymm
sup_le
boundary_sup_le
boundary_inf_le
boundary_le_boundary_sup_sup_boundary_inf_left
boundary_le_boundary_sup_sup_boundary_inf_right
boundary_top πŸ“–mathematicalβ€”boundary
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
Bot.bot
OrderBot.toBot
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
CoheytingAlgebra.toBoundedOrder
β€”boundary.eq_1
hnot_top
inf_bot_eq
hnot_boundary πŸ“–mathematicalβ€”HNot.hnot
CoheytingAlgebra.toHNot
boundary
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
β€”boundary.eq_1
hnot_inf_distrib
sup_hnot_self
hnot_eq_top_iff_exists_boundary πŸ“–mathematicalβ€”HNot.hnot
CoheytingAlgebra.toHNot
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
boundary
β€”boundary.eq_1
inf_top_eq
hnot_boundary
hnot_hnot_sup_boundary πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
boundary
β€”boundary.eq_1
sup_inf_left
hnot_sup_self
inf_top_eq
sup_eq_right
hnot_hnot_le
inf_hnot_self πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
HNot.hnot
CoheytingAlgebra.toHNot
boundary
β€”β€”

Heyting

Definitions

NameCategoryTheorems
Β«termβˆ‚_Β» πŸ“–CompOpβ€”

---

← Back to Index