Documentation Verification Report

Hom

πŸ“ Source: Mathlib/Order/Heyting/Hom.lean

Statistics

MetricCount
DefinitionsBiheytingHom, comp, copy, id, instFunLike, instInhabited, instPartialOrder, toLatticeHom, BiheytingHomClass, CoheytingHom, comp, copy, id, instFunLike, instInhabited, instPartialOrder, toLatticeHom, CoheytingHomClass, HeytingHom, comp, copy, id, instFunLike, instInhabited, instPartialOrder, toLatticeHom, HeytingHomClass, instCoeTCBiheytingHomOfBiheytingHomClass, instCoeTCCoheytingHomOfCoheytingHomClass, instCoeTCHeytingHomOfHeytingHomClass
30
Theoremscancel_left, cancel_right, coe_comp, coe_copy, coe_id, comp_apply, comp_assoc, comp_id, copy_eq, ext, ext_iff, id_apply, id_comp, instBiheytingHomClass, map_himp', map_sdiff', toFun_eq_coe, toFun_eq_coe_aux, map_himp, map_sdiff, toCoheytingHomClass, toHeytingHomClass, toLatticeHomClass, toBiheytingHomClass, cancel_left, cancel_right, coe_comp, coe_copy, coe_id, comp_apply, comp_assoc, comp_id, copy_eq, ext, ext_iff, id_apply, id_comp, instCoheytingHomClass, map_sdiff', map_top', toFun_eq_coe, toFun_eq_coe_aux, map_sdiff, map_top, toBoundedLatticeHomClass, toLatticeHomClass, cancel_left, cancel_right, coe_comp, coe_copy, coe_id, comp_apply, comp_assoc, comp_id, copy_eq, ext, ext_iff, id_apply, id_comp, instHeytingHomClass, map_bot', map_himp', toFun_eq_coe, toFun_eq_coe_aux, map_bot, map_himp, toBoundedLatticeHomClass, toLatticeHomClass, toBiheytingHomClass, toCoheytingHomClass, toHeytingHomClass, map_bihimp, map_compl, map_hnot, map_symmDiff
75
Total105

BiheytingHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
7 mathmath: cancel_left, comp_assoc, id_comp, comp_id, cancel_right, coe_comp, comp_apply
copy πŸ“–CompOp
2 mathmath: coe_copy, copy_eq
id πŸ“–CompOp
4 mathmath: id_comp, coe_id, id_apply, comp_id
instFunLike πŸ“–CompOp
8 mathmath: instBiheytingHomClass, toFun_eq_coe_aux, coe_id, toFun_eq_coe, ext_iff, id_apply, coe_comp, comp_apply
instInhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
toLatticeHom πŸ“–CompOp
4 mathmath: map_sdiff', toFun_eq_coe_aux, toFun_eq_coe, map_himp'

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
BiheytingHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
BiheytingHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
BiheytingHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
BiheytingHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
BiheytingHom
instFunLike
id
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
BiheytingHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
copy_eq πŸ“–mathematicalDFunLike.coe
BiheytingHom
instFunLike
copyβ€”DFunLike.ext'
ext πŸ“–β€”DFunLike.coe
BiheytingHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
BiheytingHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
BiheytingHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instBiheytingHomClass πŸ“–mathematicalβ€”BiheytingHomClass
BiheytingHom
instFunLike
β€”SupHom.map_sup'
LatticeHom.map_inf'
map_himp'
map_sdiff'
map_himp' πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
LatticeHom.toSupHom
toLatticeHom
HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
BiheytingAlgebra.toHeytingAlgebra
β€”β€”
map_sdiff' πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
LatticeHom.toSupHom
toLatticeHom
BiheytingAlgebra.toSDiff
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
LatticeHom.toSupHom
toLatticeHom
DFunLike.coe
BiheytingHom
instFunLike
β€”β€”
toFun_eq_coe_aux πŸ“–mathematicalβ€”DFunLike.coe
LatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
LatticeHom.instFunLike
toLatticeHom
BiheytingHom
instFunLike
β€”β€”

BiheytingHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_himp πŸ“–mathematicalβ€”DFunLike.coe
HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
BiheytingAlgebra.toHeytingAlgebra
β€”β€”
map_sdiff πŸ“–mathematicalβ€”DFunLike.coe
BiheytingAlgebra.toSDiff
β€”β€”
toCoheytingHomClass πŸ“–mathematicalβ€”CoheytingHomClass
BiheytingAlgebra.toCoheytingAlgebra
β€”toLatticeHomClass
himp_self
map_himp
map_sdiff
toHeytingHomClass πŸ“–mathematicalβ€”HeytingHomClass
BiheytingAlgebra.toHeytingAlgebra
β€”toLatticeHomClass
sdiff_self
map_sdiff
map_himp
toLatticeHomClass πŸ“–mathematicalβ€”LatticeHomClass
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
β€”β€”

BoundedLatticeHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
toBiheytingHomClass πŸ“–mathematicalβ€”BiheytingHomClass
BooleanAlgebra.toBiheytingAlgebra
β€”toLatticeHomClass
himp_eq
SupHomClass.map_sup
SupBotHomClass.toSupHomClass
toSupBotHomClass
IsCompl.compl_eq
IsCompl.map
isCompl_compl
sdiff_eq
InfHomClass.map_inf
InfTopHomClass.toInfHomClass
toInfTopHomClass

CoheytingHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
7 mathmath: id_comp, comp_apply, comp_assoc, comp_id, cancel_left, cancel_right, coe_comp
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
id πŸ“–CompOp
4 mathmath: id_apply, id_comp, coe_id, comp_id
instFunLike πŸ“–CompOp
8 mathmath: id_apply, toFun_eq_coe_aux, coe_id, comp_apply, toFun_eq_coe, coe_comp, instCoheytingHomClass, ext_iff
instInhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
toLatticeHom πŸ“–CompOp
4 mathmath: toFun_eq_coe_aux, map_top', map_sdiff', toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
CoheytingHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
CoheytingHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
CoheytingHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
CoheytingHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
CoheytingHom
instFunLike
id
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
CoheytingHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
copy_eq πŸ“–mathematicalDFunLike.coe
CoheytingHom
instFunLike
copyβ€”DFunLike.ext'
ext πŸ“–β€”DFunLike.coe
CoheytingHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
CoheytingHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
CoheytingHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instCoheytingHomClass πŸ“–mathematicalβ€”CoheytingHomClass
CoheytingHom
instFunLike
β€”SupHom.map_sup'
LatticeHom.map_inf'
map_top'
map_sdiff'
map_sdiff' πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
LatticeHom.toSupHom
toLatticeHom
GeneralizedCoheytingAlgebra.toSDiff
β€”β€”
map_top' πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
LatticeHom.toSupHom
toLatticeHom
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CoheytingAlgebra.toOrderTop
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
LatticeHom.toSupHom
toLatticeHom
DFunLike.coe
CoheytingHom
instFunLike
β€”β€”
toFun_eq_coe_aux πŸ“–mathematicalβ€”DFunLike.coe
LatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
LatticeHom.instFunLike
toLatticeHom
CoheytingHom
instFunLike
β€”β€”

CoheytingHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_sdiff πŸ“–mathematicalβ€”DFunLike.coe
GeneralizedCoheytingAlgebra.toSDiff
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
β€”β€”
map_top πŸ“–mathematicalβ€”DFunLike.coe
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toOrderTop
β€”β€”
toBoundedLatticeHomClass πŸ“–mathematicalβ€”BoundedLatticeHomClass
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
CoheytingAlgebra.toBoundedOrder
β€”toLatticeHomClass
map_top
sdiff_self
map_sdiff
toLatticeHomClass πŸ“–mathematicalβ€”LatticeHomClass
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
β€”β€”

HeytingHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
9 mathmath: HeytAlg.hom_comp, coe_comp, cancel_right, id_comp, cancel_left, comp_id, comp_assoc, HeytAlg.ofHom_comp, comp_apply
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
id πŸ“–CompOp
6 mathmath: HeytAlg.hom_id, id_comp, HeytAlg.ofHom_id, comp_id, coe_id, id_apply
instFunLike πŸ“–CompOp
23 mathmath: HeytAlg.hasForgetToLat_forgetβ‚‚_map, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_str, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_carrier, HeytAlg.coe_comp, coe_comp, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, HeytAlg.id_apply, HeytAlg.hom_inv_apply, HeytAlg.inv_hom_apply, HeytAlg.comp_apply, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_isBoundedOrder, toFun_eq_coe_aux, HeytAlg.ofHom_apply, HeytAlg.coe_id, instHeytingHomClass, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_obj_coe, toFun_eq_coe, comp_apply, HeytAlg.forget_map, HeytAlg.ext_iff, coe_id, ext_iff, id_apply
instInhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
toLatticeHom πŸ“–CompOp
4 mathmath: map_himp', toFun_eq_coe_aux, map_bot', toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
HeytingHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
HeytingHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
HeytingHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
HeytingHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
HeytingHom
instFunLike
id
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
HeytingHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
copy_eq πŸ“–mathematicalDFunLike.coe
HeytingHom
instFunLike
copyβ€”DFunLike.ext'
ext πŸ“–β€”DFunLike.coe
HeytingHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
HeytingHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
HeytingHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instHeytingHomClass πŸ“–mathematicalβ€”HeytingHomClass
HeytingHom
instFunLike
β€”SupHom.map_sup'
LatticeHom.map_inf'
map_bot'
map_himp'
map_bot' πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
LatticeHom.toSupHom
toLatticeHom
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
HeytingAlgebra.toOrderBot
β€”β€”
map_himp' πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
LatticeHom.toSupHom
toLatticeHom
HImp.himp
GeneralizedHeytingAlgebra.toHImp
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
LatticeHom.toSupHom
toLatticeHom
DFunLike.coe
HeytingHom
instFunLike
β€”β€”
toFun_eq_coe_aux πŸ“–mathematicalβ€”DFunLike.coe
LatticeHom
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
LatticeHom.instFunLike
toLatticeHom
HeytingHom
instFunLike
β€”β€”

HeytingHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_bot πŸ“–mathematicalβ€”DFunLike.coe
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toOrderBot
β€”β€”
map_himp πŸ“–mathematicalβ€”DFunLike.coe
HImp.himp
GeneralizedHeytingAlgebra.toHImp
HeytingAlgebra.toGeneralizedHeytingAlgebra
β€”β€”
toBoundedLatticeHomClass πŸ“–mathematicalβ€”BoundedLatticeHomClass
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
HeytingAlgebra.toBoundedOrder
β€”toLatticeHomClass
himp_self
map_himp
map_bot
toLatticeHomClass πŸ“–mathematicalβ€”LatticeHomClass
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
β€”β€”

OrderIsoClass

Theorems

NameKindAssumesProvesValidatesDepends On
toBiheytingHomClass πŸ“–mathematicalβ€”BiheytingHomClass
EquivLike.toFunLike
β€”toLatticeHomClass
eq_of_forall_le_iff
map_le_map_iff
InfHomClass.map_inf
InfTopHomClass.toInfHomClass
toInfTopHomClass
EquivLike.apply_inv_apply
eq_of_forall_ge_iff
SupHomClass.map_sup
SupBotHomClass.toSupHomClass
toSupBotHomClass
toCoheytingHomClass πŸ“–mathematicalβ€”CoheytingHomClass
EquivLike.toFunLike
β€”toBoundedLatticeHomClass
BoundedLatticeHomClass.toLatticeHomClass
BoundedLatticeHomClass.map_top
eq_of_forall_ge_iff
map_le_map_iff
SupHomClass.map_sup
SupBotHomClass.toSupHomClass
toSupBotHomClass
EquivLike.apply_inv_apply
toHeytingHomClass πŸ“–mathematicalβ€”HeytingHomClass
EquivLike.toFunLike
β€”toBoundedLatticeHomClass
BoundedLatticeHomClass.toLatticeHomClass
BoundedLatticeHomClass.map_bot
eq_of_forall_le_iff
map_le_map_iff
InfHomClass.map_inf
InfTopHomClass.toInfHomClass
toInfTopHomClass
EquivLike.apply_inv_apply

(root)

Definitions

NameCategoryTheorems
BiheytingHom πŸ“–CompData
8 mathmath: BiheytingHom.instBiheytingHomClass, BiheytingHom.toFun_eq_coe_aux, BiheytingHom.coe_id, BiheytingHom.toFun_eq_coe, BiheytingHom.ext_iff, BiheytingHom.id_apply, BiheytingHom.coe_comp, BiheytingHom.comp_apply
BiheytingHomClass πŸ“–CompData
3 mathmath: BiheytingHom.instBiheytingHomClass, OrderIsoClass.toBiheytingHomClass, BoundedLatticeHomClass.toBiheytingHomClass
CoheytingHom πŸ“–CompData
8 mathmath: CoheytingHom.id_apply, CoheytingHom.toFun_eq_coe_aux, CoheytingHom.coe_id, CoheytingHom.comp_apply, CoheytingHom.toFun_eq_coe, CoheytingHom.coe_comp, CoheytingHom.instCoheytingHomClass, CoheytingHom.ext_iff
CoheytingHomClass πŸ“–CompData
3 mathmath: BiheytingHomClass.toCoheytingHomClass, CoheytingHom.instCoheytingHomClass, OrderIsoClass.toCoheytingHomClass
HeytingHom πŸ“–CompData
23 mathmath: HeytAlg.hasForgetToLat_forgetβ‚‚_map, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_str, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_carrier, HeytAlg.coe_comp, HeytingHom.coe_comp, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, HeytAlg.id_apply, HeytAlg.hom_inv_apply, HeytAlg.inv_hom_apply, HeytAlg.comp_apply, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_isBoundedOrder, HeytingHom.toFun_eq_coe_aux, HeytAlg.ofHom_apply, HeytAlg.coe_id, HeytingHom.instHeytingHomClass, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_obj_coe, HeytingHom.toFun_eq_coe, HeytingHom.comp_apply, HeytAlg.forget_map, HeytAlg.ext_iff, HeytingHom.coe_id, HeytingHom.ext_iff, HeytingHom.id_apply
HeytingHomClass πŸ“–CompData
3 mathmath: BiheytingHomClass.toHeytingHomClass, OrderIsoClass.toHeytingHomClass, HeytingHom.instHeytingHomClass
instCoeTCBiheytingHomOfBiheytingHomClass πŸ“–CompOpβ€”
instCoeTCCoheytingHomOfCoheytingHomClass πŸ“–CompOpβ€”
instCoeTCHeytingHomOfHeytingHomClass πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
map_bihimp πŸ“–mathematicalβ€”DFunLike.coe
bihimp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
GeneralizedHeytingAlgebra.toHImp
β€”InfHomClass.map_inf
InfTopHomClass.toInfHomClass
BoundedLatticeHomClass.toInfTopHomClass
HeytingHomClass.toBoundedLatticeHomClass
HeytingHomClass.map_himp
map_compl πŸ“–mathematicalβ€”DFunLike.coe
Compl.compl
HeytingAlgebra.toCompl
β€”himp_bot
HeytingHomClass.map_himp
BotHomClass.map_bot
SupBotHomClass.toBotHomClass
BoundedLatticeHomClass.toSupBotHomClass
HeytingHomClass.toBoundedLatticeHomClass
map_hnot πŸ“–mathematicalβ€”DFunLike.coe
HNot.hnot
CoheytingAlgebra.toHNot
β€”top_sdiff'
CoheytingHomClass.map_sdiff
TopHomClass.map_top
InfTopHomClass.toTopHomClass
BoundedLatticeHomClass.toInfTopHomClass
CoheytingHomClass.toBoundedLatticeHomClass
map_symmDiff πŸ“–mathematicalβ€”DFunLike.coe
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedCoheytingAlgebra.toSDiff
β€”SupHomClass.map_sup
SupBotHomClass.toSupHomClass
BoundedLatticeHomClass.toSupBotHomClass
CoheytingHomClass.toBoundedLatticeHomClass
CoheytingHomClass.map_sdiff

---

← Back to Index