Regular
📁 Source: Mathlib/Order/Heyting/Regular.lean
Statistics
| Metric | Count |
|---|---|
DefinitionsofRegular, IsRegular, decidablePred, Regular, bot, boundedOrder, gi, himp, inf, instBooleanAlgebra, instCoeOut, instCompl, instInhabited, instPartialOrder, lattice, toRegular, top, val | 18 |
Theoremsdisjoint_compl_left_iff, disjoint_compl_right_iff, eq, himp, inf, coe_bot, coe_compl, coe_himp, coe_inf, coe_inj, coe_injective, coe_le_coe, coe_lt_coe, coe_sdiff, coe_sup, coe_toRegular, coe_top, prop, toRegular_coe, isRegular_bot, isRegular_compl, isRegular_of_boolean, isRegular_of_decidable, isRegular_top | 24 |
| Total | 42 |
BooleanAlgebra
Definitions
| Name | Category | Theorems |
|---|---|---|
ofRegular 📖 | CompOp | — |
Heyting
Definitions
| Name | Category | Theorems |
|---|---|---|
IsRegular 📖 | MathDef | |
Regular 📖 | CompOp |
Theorems
Heyting.IsRegular
Definitions
| Name | Category | Theorems |
|---|---|---|
decidablePred 📖 | CompOp | — |
Theorems
Heyting.Regular
Definitions
| Name | Category | Theorems |
|---|---|---|
bot 📖 | CompOp | |
boundedOrder 📖 | CompOp | — |
gi 📖 | CompOp | — |
himp 📖 | CompOp | |
inf 📖 | CompOp | |
instBooleanAlgebra 📖 | CompOp | |
instCoeOut 📖 | CompOp | — |
instCompl 📖 | CompOp | |
instInhabited 📖 | CompOp | — |
instPartialOrder 📖 | CompOp | |
lattice 📖 | CompOp | |
toRegular 📖 | CompOp | |
top 📖 | CompOp | |
val 📖 | CompOp | 14 mathmath:coe_himp, coe_sdiff, coe_inj, coe_le_coe, coe_inf, coe_bot, coe_injective, coe_top, prop, coe_toRegular, coe_lt_coe, toRegular_coe, coe_sup, coe_compl |
Theorems
---