Documentation Verification Report

BoundedLattice

πŸ“ Source: Mathlib/Order/Hom/BoundedLattice.lean

Statistics

MetricCount
DefinitionsBoundedLatticeHom, comp, copy, dual, id, instFunLike, instInhabited, subtypeVal, toBoundedOrderHom, toInfTopHom, toLatticeHom, toSupBotHom, BoundedLatticeHomClass, InfTopHom, comp, copy, dual, id, instFunLike, instInhabited, instMin, instOrderTop, instPartialOrder, instSemilatticeInf, subtypeVal, toInfHom, toTopHom, InfTopHomClass, SupBotHom, comp, copy, dual, id, instFunLike, instInhabited, instMax, instOrderBot, instPartialOrder, instSemilatticeSup, subtypeVal, toBotHom, toSupHom, SupBotHomClass, instCoeTCBoundedLatticeHomOfBoundedLatticeHomClass, instCoeTCInfTopHomOfInfTopHomClass, instCoeTCSupBotHomOfSupBotHomClass
46
Theoremscancel_left, cancel_right, coe_comp, coe_comp_inf_hom, coe_comp_inf_hom', coe_comp_lattice_hom, coe_comp_lattice_hom', coe_comp_sup_hom, coe_comp_sup_hom', coe_copy, coe_id, coe_mk, coe_toBoundedOrderHom, coe_toInfTopHom, coe_toLatticeHom, coe_toSupBotHom, comp_apply, comp_assoc, comp_id, copy_eq, dual_apply_toFun, dual_comp, dual_id, dual_symm_apply_toFun, ext, ext_iff, id_apply, id_comp, instBoundedLatticeHomClass, map_bot', map_top', subtypeVal_apply, subtypeVal_coe, symm_dual_comp, symm_dual_id, toFun_eq_coe, map_bot, map_top, toBoundedOrderHomClass, toInfTopHomClass, toLatticeHomClass, toSupBotHomClass, map, map, cancel_left, cancel_right, coe_comp, coe_copy, coe_id, coe_inf, coe_mk, coe_toInfHom, coe_toTopHom, coe_top, comp_apply, comp_assoc, comp_id, copy_eq, dual_apply_toFun, dual_comp, dual_id, dual_symm_apply_toFun, ext, ext_iff, id_apply, id_comp, id_toFun, inf_apply, instInfTopHomClass, map_top', subtypeVal_apply, subtypeVal_coe, symm_dual_comp, symm_dual_id, toFun_eq_coe, top_apply, map_top, toInfHomClass, toTopHomClass, map, toBoundedLatticeHomClass, toInfTopHomClass, toSupBotHomClass, bot_apply, cancel_left, cancel_right, coe_bot, coe_comp, coe_copy, coe_id, coe_mk, coe_sup, coe_toBotHom, coe_toSupHom, comp_apply, comp_assoc, comp_id, copy_eq, dual_comp, dual_id, ext, ext_iff, id_apply, id_comp, id_toFun, instSupBotHomClass, map_bot', subtypeVal_apply, subtypeVal_coe, sup_apply, symm_dual_comp, symm_dual_id, toFun_eq_coe, map_bot, toBotHomClass, toSupHomClass, map_compl', map_sdiff', map_symmDiff'
119
Total165

BoundedLatticeHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
27 mathmath: cancel_right, BooleanSubalgebra.map_map, FinBddDistLat.ofHom_comp, coe_comp_sup_hom', comp_id, symm_dual_comp, LatticeHom.withTopWithBot_comp, BooleanSubalgebra.subtype_comp_inclusion, BoolAlg.ofHom_comp, coe_comp_lattice_hom', id_comp, coe_comp_sup_hom, cancel_left, BoolAlg.hom_comp, RingHom.asBoolAlg_comp, FinBddDistLat.hom_comp, asBoolRing_comp, BddDistLat.ofHom_comp, dual_comp, coe_comp, BddDistLat.hom_comp, coe_comp_inf_hom', comp_apply, coe_comp_inf_hom, coe_comp_lattice_hom, comp_assoc, BooleanSubalgebra.comap_comap
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
dual πŸ“–CompOp
11 mathmath: dual_id, symm_dual_comp, dual_symm_apply_toFun, BddDistLat.dual_map, symm_dual_id, BoolAlg.dual_map, dual_apply_toFun, dual_comp, FinBddDistLat.dual_map, FinBoolAlg.dual_map, BddLat.dual_map
id πŸ“–CompOp
18 mathmath: dual_id, comp_id, LatticeHom.withTopWithBot_id, BddDistLat.hom_id, BddDistLat.ofHom_id, BoolAlg.hom_id, id_comp, BooleanSubalgebra.comap_id, symm_dual_id, RingHom.asBoolAlg_id, BoolAlg.ofHom_id, asBoolRing_id, BooleanSubalgebra.inclusion_rfl, BooleanSubalgebra.map_id, coe_id, FinBddDistLat.hom_id, FinBddDistLat.ofHom_id, id_apply
instFunLike πŸ“–CompOp
105 mathmath: BoolAlg.coe_id, coe_toLatticeHom, LatticeHom.withTopWithBot_apply, CompleteLatticeHom.coe_toBoundedLatticeHom, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_obj_coe, HeytAlg.hasForgetToLat_forgetβ‚‚_map, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_obj_carrier, coe_comp_sup_hom', LatticeHom.coe_withTopWithBot, BoolAlg.ext_iff, FinBddDistLat.ofHom_apply, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_map, BddDistLat.coe_id, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_str, FinBddDistLat.hom_inv_apply, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_carrier, bddLat_dual_comp_forget_to_lat, boolRingCatEquivBoolAlg_functor, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, FinBddDistLat.ext_iff, BooleanSubalgebra.mem_comap, LatticeHom.withTopWithBot'_toFun, FinBddDistLat.coe_id, BooleanSubalgebra.coe_map, FinBddDistLat.inv_hom_apply, finBddDistLat_dual_comp_forget_to_bddDistLat, coe_comp_lattice_hom', BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, FinBddDistLat.forget_map, BddDistLat.coe_comp, FinBoolAlg.forgetToFinPartOrdFaithful, coe_comp_sup_hom, BooleanSubalgebra.subtype_injective, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, coe_toSupBotHom, BooleanSubalgebra.apply_coe_mem_map, BddDistLat.forget_map, dual_symm_apply_toFun, BooleanSubalgebra.coe_inclusion, ext_iff, FinBddDistLat.comp_apply, bddLat_dual_comp_forget_to_semilatSupCat, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_carrier, BooleanSubalgebra.mem_map_of_mem, subtypeVal_coe, BddDistLat.inv_hom_apply, LatticeHom.withTopWithBot_toFun, BooleanSubalgebra.subtype_apply, bddLat_dual_comp_forget_to_semilatInfCat, BooleanSubalgebra.inclusion_injective, toFun_eq_coe, BddDistLat.ofHom_apply, boolRingCatEquivBoolAlg_inverse, BoolAlg.coe_comp, asBoolRing_apply, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_isBoundedOrder, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_map, BoolAlg.hom_inv_apply, dual_apply_toFun, BddDistLat.id_apply, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_isFintype, BooleanSubalgebra.mem_map, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, BoolAlg.comp_apply, finBoolAlg_dual_comp_forget_to_finBddDistLat, completeLat_dual_comp_forget_to_bddLat, coe_toBoundedOrderHom, BddLat.coe_forget_to_semilatSup, FinBddDistLat.coe_comp, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_obj_coe, BooleanSubalgebra.coe_subtype, instBoundedLatticeHomClass, BddDistLat.ext_iff, coe_toInfTopHom, coe_comp, BooleanSubalgebra.coe_comap, BddLat.coe_forget_to_bddOrd, BoolAlg.inv_hom_apply, BddLat.coe_forget_to_semilatInf, boolAlg_dual_comp_forget_to_bddDistLat, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, FinBoolAlg.forgetToBoolAlg_full, FinBddDistLat.id_apply, BddDistLat.comp_apply, BddLat.ext_iff, bddDistLat_dual_comp_forget_to_distLat, BooleanSubalgebra.inclusion_apply, coe_comp_inf_hom', comp_apply, coe_mk, coe_comp_inf_hom, coe_id, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_str, BoolAlg.id_apply, BddDistLat.hom_inv_apply, subtypeVal_apply, FinBoolAlg.forgetToBoolAlgFaithful, coe_comp_lattice_hom, id_apply, BoolAlg.ofHom_apply, BoolAlg.forget_map, RingHom.asBoolAlg_toFun
instInhabited πŸ“–CompOpβ€”
subtypeVal πŸ“–CompOp
2 mathmath: subtypeVal_coe, subtypeVal_apply
toBoundedOrderHom πŸ“–CompOp
1 mathmath: coe_toBoundedOrderHom
toInfTopHom πŸ“–CompOp
1 mathmath: coe_toInfTopHom
toLatticeHom πŸ“–CompOp
4 mathmath: coe_toLatticeHom, map_top', map_bot', toFun_eq_coe
toSupBotHom πŸ“–CompOp
1 mathmath: coe_toSupBotHom

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
BoundedLatticeHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
BoundedLatticeHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
BoundedLatticeHom
instFunLike
comp
β€”β€”
coe_comp_inf_hom πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DFunLike.coe
BoundedLatticeHom
instFunLike
comp
InfHomClass.map_inf
InfTopHomClass.toInfHomClass
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
BoundedOrder.toOrderTop
BoundedLatticeHomClass.toInfTopHomClass
instBoundedLatticeHomClass
InfHom.comp
β€”InfHomClass.map_inf
InfTopHomClass.toInfHomClass
BoundedLatticeHomClass.toInfTopHomClass
instBoundedLatticeHomClass
coe_comp_inf_hom' πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DFunLike.coe
BoundedLatticeHom
instFunLike
InfHomClass.map_inf
InfTopHomClass.toInfHomClass
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
BoundedOrder.toOrderTop
BoundedLatticeHomClass.toInfTopHomClass
instBoundedLatticeHomClass
comp
InfHom.comp
β€”InfHomClass.map_inf
InfTopHomClass.toInfHomClass
BoundedLatticeHomClass.toInfTopHomClass
instBoundedLatticeHomClass
coe_comp_lattice_hom πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
BoundedLatticeHom
instFunLike
comp
BoundedLatticeHomClass.toLatticeHomClass
instBoundedLatticeHomClass
LatticeHom.comp
β€”BoundedLatticeHomClass.toLatticeHomClass
instBoundedLatticeHomClass
coe_comp_lattice_hom' πŸ“–mathematicalβ€”SupHom.comp
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
BoundedLatticeHom
instFunLike
SupHomClass.map_sup
SupBotHomClass.toSupHomClass
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
BoundedLatticeHomClass.toSupBotHomClass
instBoundedLatticeHomClass
InfHomClass.map_inf
SemilatticeInf.toMin
InfTopHomClass.toInfHomClass
OrderTop.toTop
BoundedOrder.toOrderTop
BoundedLatticeHomClass.toInfTopHomClass
comp
LatticeHom.comp
BoundedLatticeHomClass.toLatticeHomClass
β€”SupHomClass.map_sup
SupBotHomClass.toSupHomClass
BoundedLatticeHomClass.toSupBotHomClass
instBoundedLatticeHomClass
InfHomClass.map_inf
InfTopHomClass.toInfHomClass
BoundedLatticeHomClass.toInfTopHomClass
coe_comp_sup_hom πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
BoundedLatticeHom
instFunLike
comp
SupHomClass.map_sup
SupBotHomClass.toSupHomClass
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
BoundedLatticeHomClass.toSupBotHomClass
instBoundedLatticeHomClass
SupHom.comp
β€”SupHomClass.map_sup
SupBotHomClass.toSupHomClass
BoundedLatticeHomClass.toSupBotHomClass
instBoundedLatticeHomClass
coe_comp_sup_hom' πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
BoundedLatticeHom
instFunLike
SupHomClass.map_sup
SupBotHomClass.toSupHomClass
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
BoundedLatticeHomClass.toSupBotHomClass
instBoundedLatticeHomClass
comp
SupHom.comp
β€”SupHomClass.map_sup
SupBotHomClass.toSupHomClass
BoundedLatticeHomClass.toSupBotHomClass
instBoundedLatticeHomClass
coe_copy πŸ“–mathematicalDFunLike.coe
BoundedLatticeHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
BoundedLatticeHom
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalSupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
LatticeHom.toSupHom
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderTop
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
DFunLike.coe
BoundedLatticeHom
instFunLike
LatticeHom
LatticeHom.instFunLike
β€”β€”
coe_toBoundedOrderHom πŸ“–mathematicalβ€”DFunLike.coe
BoundedOrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrderHom.instFunLike
toBoundedOrderHom
BoundedLatticeHom
instFunLike
β€”β€”
coe_toInfTopHom πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
SemilatticeInf.toMin
Lattice.toSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
BoundedOrder.toOrderTop
InfTopHom.instFunLike
toInfTopHom
BoundedLatticeHom
instFunLike
β€”β€”
coe_toLatticeHom πŸ“–mathematicalβ€”DFunLike.coe
LatticeHom
LatticeHom.instFunLike
toLatticeHom
BoundedLatticeHom
instFunLike
β€”β€”
coe_toSupBotHom πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
SemilatticeSup.toMax
Lattice.toSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
SupBotHom.instFunLike
toSupBotHom
BoundedLatticeHom
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedLatticeHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
copy_eq πŸ“–mathematicalDFunLike.coe
BoundedLatticeHom
instFunLike
copyβ€”DFunLike.ext'
dual_apply_toFun πŸ“–mathematicalβ€”DFunLike.coe
BoundedLatticeHom
OrderDual
OrderDual.instLattice
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
dual
β€”β€”
dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
BoundedLatticeHom
OrderDual
OrderDual.instLattice
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
EquivLike.toFunLike
Equiv.instEquivLike
dual
comp
β€”β€”
dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
BoundedLatticeHom
OrderDual
OrderDual.instLattice
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
EquivLike.toFunLike
Equiv.instEquivLike
dual
id
β€”β€”
dual_symm_apply_toFun πŸ“–mathematicalβ€”DFunLike.coe
BoundedLatticeHom
instFunLike
Equiv
OrderDual
OrderDual.instLattice
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
β€”β€”
ext πŸ“–β€”DFunLike.coe
BoundedLatticeHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
BoundedLatticeHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedLatticeHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
instBoundedLatticeHomClass πŸ“–mathematicalβ€”BoundedLatticeHomClass
BoundedLatticeHom
instFunLike
β€”SupHom.map_sup'
LatticeHom.map_inf'
map_top'
map_bot'
map_bot' πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
LatticeHom.toSupHom
toLatticeHom
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
β€”β€”
map_top' πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
LatticeHom.toSupHom
toLatticeHom
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderTop
β€”β€”
subtypeVal_apply πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
DFunLike.coe
BoundedLatticeHom
Subtype.lattice
Subtype.boundedOrder
instFunLike
subtypeVal
β€”β€”
subtypeVal_coe πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
DFunLike.coe
BoundedLatticeHom
Subtype.lattice
Subtype.boundedOrder
instFunLike
subtypeVal
β€”β€”
symm_dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
BoundedLatticeHom
OrderDual
OrderDual.instLattice
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
comp
β€”β€”
symm_dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
BoundedLatticeHom
OrderDual
OrderDual.instLattice
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
id
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”SupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
LatticeHom.toSupHom
toLatticeHom
DFunLike.coe
BoundedLatticeHom
instFunLike
β€”β€”

BoundedLatticeHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_bot πŸ“–mathematicalβ€”DFunLike.coe
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
β€”β€”
map_top πŸ“–mathematicalβ€”DFunLike.coe
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderTop
β€”β€”
toBoundedOrderHomClass πŸ“–mathematicalβ€”BoundedOrderHomClass
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”InfHomClass.toOrderHomClass
InfTopHomClass.toInfHomClass
toInfTopHomClass
map_top
map_bot
toInfTopHomClass πŸ“–mathematicalβ€”InfTopHomClass
SemilatticeInf.toMin
Lattice.toSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
BoundedOrder.toOrderTop
β€”LatticeHomClass.map_inf
toLatticeHomClass
map_top
toLatticeHomClass πŸ“–mathematicalβ€”LatticeHomClassβ€”β€”
toSupBotHomClass πŸ“–mathematicalβ€”SupBotHomClass
SemilatticeSup.toMax
Lattice.toSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
BoundedOrder.toOrderBot
β€”LatticeHomClass.toSupHomClass
toLatticeHomClass
map_bot

Codisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
map πŸ“–mathematicalCodisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DFunLike.coeβ€”codisjoint_iff
SupHomClass.map_sup
eq_top
TopHomClass.map_top

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
map πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DFunLike.coeβ€”disjoint_iff
InfHomClass.map_inf
eq_bot
BotHomClass.map_bot

InfTopHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
12 mathmath: comp_id, SupBotHom.dual_comp, SupBotHom.symm_dual_comp, symm_dual_comp, cancel_right, id_comp, comp_assoc, cancel_left, dual_comp, comp_apply, coe_comp, InfHom.withTop_comp
copy πŸ“–CompOp
2 mathmath: coe_copy, copy_eq
dual πŸ“–CompOp
7 mathmath: symm_dual_id, symm_dual_comp, dual_id, dual_comp, dual_apply_toFun, SemilatInfCat.dual_map, dual_symm_apply_toFun
id πŸ“–CompOp
10 mathmath: comp_id, symm_dual_id, id_comp, dual_id, id_apply, coe_id, SupBotHom.dual_id, InfHom.withTop_id, SupBotHom.symm_dual_id, id_toFun
instFunLike πŸ“–CompOp
34 mathmath: inf_apply, coe_toInfHom, SemilatInfCat_dual_comp_forget_to_partOrd, id_apply, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, coe_id, SemilatInfCat.coe_forget_to_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, InfHom.withTop_toFun, FrameHom.coe_toInfTopHom, InfHom.withTop'_toFun, bddLat_dual_comp_forget_to_semilatInfCat, subtypeVal_coe, comp_apply, SemilatInfCat.Iso.mk_inv_toFun, coe_comp, dual_apply_toFun, coe_mk, coe_top, FrameHom.coe_mk, dual_symm_apply_toFun, ext_iff, SemilatInfCat.Iso.mk_hom_toFun, Ideal.radicalInfTopHom_apply, BoundedLatticeHom.coe_toInfTopHom, BddLat.coe_forget_to_semilatInf, instInfTopHomClass, SemilatSupCat_dual_comp_forget_to_partOrd, toFun_eq_coe, coe_inf, top_apply, subtypeVal_apply, coe_toTopHom, id_toFun
instInhabited πŸ“–CompOpβ€”
instMin πŸ“–CompOp
2 mathmath: inf_apply, coe_inf
instOrderTop πŸ“–CompOp
2 mathmath: coe_top, top_apply
instPartialOrder πŸ“–CompOp
2 mathmath: coe_top, top_apply
instSemilatticeInf πŸ“–CompOpβ€”
subtypeVal πŸ“–CompOp
2 mathmath: subtypeVal_coe, subtypeVal_apply
toInfHom πŸ“–CompOp
5 mathmath: coe_toInfHom, FrameHom.map_sSup', map_top', FrameHom.toFun_eq_coe, toFun_eq_coe
toTopHom πŸ“–CompOp
1 mathmath: coe_toTopHom

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
InfTopHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
InfTopHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
InfTopHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
instFunLike
id
β€”β€”
coe_inf πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
SemilatticeInf.toMin
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
instFunLike
instMin
Pi.instMinForall_mathlib
β€”β€”
coe_mk πŸ“–mathematicalInfHom.toFun
Top.top
DFunLike.coe
InfTopHom
instFunLike
InfHom
InfHom.instFunLike
β€”β€”
coe_toInfHom πŸ“–mathematicalβ€”DFunLike.coe
InfHom
InfHom.instFunLike
toInfHom
InfTopHom
instFunLike
β€”β€”
coe_toTopHom πŸ“–mathematicalβ€”DFunLike.coe
TopHom
TopHom.instFunLike
toTopHom
InfTopHom
instFunLike
β€”β€”
coe_top πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
SemilatticeInf.toMin
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
instFunLike
Top.top
instPartialOrder
instOrderTop
Pi.instTopForall
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
copy_eq πŸ“–mathematicalDFunLike.coe
InfTopHom
instFunLike
copyβ€”DFunLike.ext'
dual_apply_toFun πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
OrderDual
OrderDual.instSup
OrderDual.instBot
SupBotHom.instFunLike
Equiv
InfTopHom
EquivLike.toFunLike
Equiv.instEquivLike
dual
instFunLike
β€”β€”
dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
InfTopHom
SupBotHom
OrderDual
OrderDual.instSup
OrderDual.instBot
EquivLike.toFunLike
Equiv.instEquivLike
dual
comp
SupBotHom.comp
β€”β€”
dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
InfTopHom
SupBotHom
OrderDual
OrderDual.instSup
OrderDual.instBot
EquivLike.toFunLike
Equiv.instEquivLike
dual
id
SupBotHom.id
β€”β€”
dual_symm_apply_toFun πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
instFunLike
Equiv
SupBotHom
OrderDual
OrderDual.instSup
OrderDual.instBot
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
SupBotHom.instFunLike
β€”β€”
ext πŸ“–β€”DFunLike.coe
InfTopHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
id_toFun πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
instFunLike
id
β€”β€”
inf_apply πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
SemilatticeInf.toMin
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
instFunLike
instMin
β€”β€”
instInfTopHomClass πŸ“–mathematicalβ€”InfTopHomClass
InfTopHom
instFunLike
β€”InfHom.map_inf'
map_top'
map_top' πŸ“–mathematicalβ€”InfHom.toFun
toInfHom
Top.top
β€”β€”
subtypeVal_apply πŸ“–mathematicalTop.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMin
DFunLike.coe
InfTopHom
Subtype.semilatticeInf
Subtype.orderTop
instFunLike
subtypeVal
β€”β€”
subtypeVal_coe πŸ“–mathematicalTop.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatticeInf.toMin
DFunLike.coe
InfTopHom
Subtype.semilatticeInf
Subtype.orderTop
instFunLike
subtypeVal
β€”β€”
symm_dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SupBotHom
OrderDual
OrderDual.instSup
OrderDual.instBot
InfTopHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
SupBotHom.comp
comp
β€”β€”
symm_dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SupBotHom
OrderDual
OrderDual.instSup
OrderDual.instBot
InfTopHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
SupBotHom.id
id
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”InfHom.toFun
toInfHom
DFunLike.coe
InfTopHom
instFunLike
β€”β€”
top_apply πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
SemilatticeInf.toMin
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
instFunLike
Top.top
instPartialOrder
instOrderTop
β€”β€”

InfTopHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_top πŸ“–mathematicalβ€”DFunLike.coe
Top.top
β€”β€”
toInfHomClass πŸ“–mathematicalβ€”InfHomClassβ€”β€”
toTopHomClass πŸ“–mathematicalβ€”TopHomClassβ€”map_top

IsCompl

Theorems

NameKindAssumesProvesValidatesDepends On
map πŸ“–mathematicalIsCompl
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DFunLike.coeβ€”Disjoint.map
SupBotHomClass.toBotHomClass
BoundedLatticeHomClass.toSupBotHomClass
InfTopHomClass.toInfHomClass
BoundedLatticeHomClass.toInfTopHomClass
disjoint
Codisjoint.map
InfTopHomClass.toTopHomClass
SupBotHomClass.toSupHomClass
codisjoint

OrderIsoClass

Theorems

NameKindAssumesProvesValidatesDepends On
toBoundedLatticeHomClass πŸ“–mathematicalβ€”BoundedLatticeHomClass
EquivLike.toFunLike
β€”toLatticeHomClass
toBoundedOrderHomClass
BoundedOrderHomClass.map_top
BoundedOrderHomClass.map_bot
toInfTopHomClass πŸ“–mathematicalβ€”InfTopHomClass
SemilatticeInf.toMin
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
EquivLike.toFunLike
β€”toInfHomClass
toTopHomClass
TopHomClass.map_top
toSupBotHomClass πŸ“–mathematicalβ€”SupBotHomClass
SemilatticeSup.toMax
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
EquivLike.toFunLike
β€”toSupHomClass
toBotHomClass
BotHomClass.map_bot

SupBotHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
12 mathmath: comp_id, dual_comp, symm_dual_comp, InfTopHom.symm_dual_comp, cancel_left, comp_assoc, cancel_right, comp_apply, InfTopHom.dual_comp, coe_comp, SupHom.withBot_comp, id_comp
copy πŸ“–CompOp
2 mathmath: coe_copy, copy_eq
dual πŸ“–CompOp
5 mathmath: dual_comp, symm_dual_comp, SemilatSupCat.dual_map, dual_id, symm_dual_id
id πŸ“–CompOp
10 mathmath: comp_id, InfTopHom.symm_dual_id, SupHom.withBot_id, InfTopHom.dual_id, id_toFun, dual_id, id_comp, symm_dual_id, id_apply, coe_id
instFunLike πŸ“–CompOp
32 mathmath: SemilatInfCat_dual_comp_forget_to_partOrd, SemilatSupCat.Iso.mk_inv_toFun, coe_toBotHom, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, subtypeVal_coe, instSupBotHomClass, bot_apply, BoundedLatticeHom.coe_toSupBotHom, comp_apply, LatticeHom.withBot_toFun, id_toFun, subtypeVal_apply, coe_sup, bddLat_dual_comp_forget_to_semilatSupCat, coe_comp, coe_toSupHom, bddLat_dual_comp_forget_to_semilatInfCat, sup_apply, SupHom.withBot_toFun, SupHom.withBot'_toFun, InfTopHom.dual_apply_toFun, SemilatSupCat.Iso.mk_hom_toFun, toFun_eq_coe, ext_iff, InfTopHom.dual_symm_apply_toFun, BddLat.coe_forget_to_semilatSup, coe_bot, SemilatSupCat_dual_comp_forget_to_partOrd, SemilatSupCat.coe_forget_to_partOrd, id_apply, coe_mk, coe_id
instInhabited πŸ“–CompOpβ€”
instMax πŸ“–CompOp
2 mathmath: coe_sup, sup_apply
instOrderBot πŸ“–CompOp
2 mathmath: bot_apply, coe_bot
instPartialOrder πŸ“–CompOp
2 mathmath: bot_apply, coe_bot
instSemilatticeSup πŸ“–CompOpβ€”
subtypeVal πŸ“–CompOp
2 mathmath: subtypeVal_coe, subtypeVal_apply
toBotHom πŸ“–CompOp
1 mathmath: coe_toBotHom
toSupHom πŸ“–CompOp
3 mathmath: coe_toSupHom, map_bot', toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
bot_apply πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
SemilatticeSup.toMax
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instFunLike
Bot.bot
instPartialOrder
instOrderBot
β€”β€”
cancel_left πŸ“–mathematicalDFunLike.coe
SupBotHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
SupBotHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_bot πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
SemilatticeSup.toMax
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instFunLike
Bot.bot
instPartialOrder
instOrderBot
Pi.instBotForall
β€”β€”
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
SupBotHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalSupHom.toFun
Bot.bot
DFunLike.coe
SupBotHom
instFunLike
SupHom
SupHom.instFunLike
β€”β€”
coe_sup πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
SemilatticeSup.toMax
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instFunLike
instMax
Pi.instMaxForall_mathlib
β€”β€”
coe_toBotHom πŸ“–mathematicalβ€”DFunLike.coe
BotHom
BotHom.instFunLike
toBotHom
SupBotHom
instFunLike
β€”β€”
coe_toSupHom πŸ“–mathematicalβ€”DFunLike.coe
SupHom
SupHom.instFunLike
toSupHom
SupBotHom
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
copy_eq πŸ“–mathematicalDFunLike.coe
SupBotHom
instFunLike
copyβ€”DFunLike.ext'
dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SupBotHom
InfTopHom
OrderDual
OrderDual.instInf
OrderDual.instTop
EquivLike.toFunLike
Equiv.instEquivLike
dual
comp
InfTopHom.comp
β€”β€”
dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SupBotHom
InfTopHom
OrderDual
OrderDual.instInf
OrderDual.instTop
EquivLike.toFunLike
Equiv.instEquivLike
dual
id
InfTopHom.id
β€”β€”
ext πŸ“–β€”DFunLike.coe
SupBotHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
id_toFun πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
instFunLike
id
β€”β€”
instSupBotHomClass πŸ“–mathematicalβ€”SupBotHomClass
SupBotHom
instFunLike
β€”SupHom.map_sup'
map_bot'
map_bot' πŸ“–mathematicalβ€”SupHom.toFun
toSupHom
Bot.bot
β€”β€”
subtypeVal_apply πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMax
DFunLike.coe
SupBotHom
Subtype.semilatticeSup
Subtype.orderBot
instFunLike
subtypeVal
β€”β€”
subtypeVal_coe πŸ“–mathematicalBot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatticeSup.toMax
DFunLike.coe
SupBotHom
Subtype.semilatticeSup
Subtype.orderBot
instFunLike
subtypeVal
β€”β€”
sup_apply πŸ“–mathematicalβ€”DFunLike.coe
SupBotHom
SemilatticeSup.toMax
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instFunLike
instMax
β€”β€”
symm_dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
InfTopHom
OrderDual
OrderDual.instInf
OrderDual.instTop
SupBotHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
InfTopHom.comp
comp
β€”β€”
symm_dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
InfTopHom
OrderDual
OrderDual.instInf
OrderDual.instTop
SupBotHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
InfTopHom.id
id
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”SupHom.toFun
toSupHom
DFunLike.coe
SupBotHom
instFunLike
β€”β€”

SupBotHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_bot πŸ“–mathematicalβ€”DFunLike.coe
Bot.bot
β€”β€”
toBotHomClass πŸ“–mathematicalβ€”BotHomClassβ€”map_bot
toSupHomClass πŸ“–mathematicalβ€”SupHomClassβ€”β€”

(root)

Definitions

NameCategoryTheorems
BoundedLatticeHom πŸ“–CompData
114 mathmath: BoolAlg.coe_id, BoundedLatticeHom.coe_toLatticeHom, LatticeHom.withTopWithBot_apply, CompleteLatticeHom.coe_toBoundedLatticeHom, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_obj_coe, HeytAlg.hasForgetToLat_forgetβ‚‚_map, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_obj_carrier, BoundedLatticeHom.coe_comp_sup_hom', LatticeHom.coe_withTopWithBot, BoundedLatticeHom.dual_id, BoolAlg.ext_iff, FinBddDistLat.ofHom_apply, BoundedLatticeHom.symm_dual_comp, BoolAlg.hasForgetToBoolRing_forgetβ‚‚_map, BddDistLat.coe_id, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_str, FinBddDistLat.hom_inv_apply, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_carrier, bddLat_dual_comp_forget_to_lat, boolRingCatEquivBoolAlg_functor, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, FinBddDistLat.ext_iff, BooleanSubalgebra.mem_comap, LatticeHom.withTopWithBot'_toFun, FinBddDistLat.coe_id, BooleanSubalgebra.coe_map, FinBddDistLat.inv_hom_apply, finBddDistLat_dual_comp_forget_to_bddDistLat, BoundedLatticeHom.coe_comp_lattice_hom', BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_map, FinBddDistLat.forget_map, BddDistLat.coe_comp, FinBoolAlg.forgetToFinPartOrdFaithful, BoundedLatticeHom.coe_comp_sup_hom, BooleanSubalgebra.subtype_injective, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, BoundedLatticeHom.coe_toSupBotHom, BooleanSubalgebra.apply_coe_mem_map, BddDistLat.forget_map, BoundedLatticeHom.dual_symm_apply_toFun, BooleanSubalgebra.coe_inclusion, BoundedLatticeHom.ext_iff, FinBddDistLat.comp_apply, BddDistLat.dual_map, bddLat_dual_comp_forget_to_semilatSupCat, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_carrier, BoundedLatticeHom.symm_dual_id, BooleanSubalgebra.mem_map_of_mem, BoundedLatticeHom.subtypeVal_coe, BddDistLat.inv_hom_apply, LatticeHom.withTopWithBot_toFun, BooleanSubalgebra.subtype_apply, bddLat_dual_comp_forget_to_semilatInfCat, BooleanSubalgebra.inclusion_injective, BoolAlg.dual_map, BoundedLatticeHom.toFun_eq_coe, BddDistLat.ofHom_apply, boolRingCatEquivBoolAlg_inverse, BoolAlg.coe_comp, BoundedLatticeHom.asBoolRing_apply, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_isBoundedOrder, BoolRing.hasForgetToBoolAlg_forgetβ‚‚_map, BoolAlg.hom_inv_apply, BoundedLatticeHom.dual_apply_toFun, BddDistLat.id_apply, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_isFintype, BooleanSubalgebra.mem_map, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, BoolAlg.comp_apply, finBoolAlg_dual_comp_forget_to_finBddDistLat, completeLat_dual_comp_forget_to_bddLat, BoundedLatticeHom.coe_toBoundedOrderHom, BddLat.coe_forget_to_semilatSup, FinBddDistLat.coe_comp, BoolAlg.hasForgetToHeytAlg_forgetβ‚‚_obj_coe, BooleanSubalgebra.coe_subtype, BoundedLatticeHom.dual_comp, BoundedLatticeHom.instBoundedLatticeHomClass, BddDistLat.ext_iff, BoundedLatticeHom.coe_toInfTopHom, BoundedLatticeHom.coe_comp, BooleanSubalgebra.coe_comap, BddLat.coe_forget_to_bddOrd, BoolAlg.inv_hom_apply, BddLat.coe_forget_to_semilatInf, boolAlg_dual_comp_forget_to_bddDistLat, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_map, FinBoolAlg.forgetToBoolAlg_full, FinBddDistLat.id_apply, BddDistLat.comp_apply, BddLat.ext_iff, bddDistLat_dual_comp_forget_to_distLat, BooleanSubalgebra.inclusion_apply, BoundedLatticeHom.coe_comp_inf_hom', BoundedLatticeHom.comp_apply, BoundedLatticeHom.coe_mk, BoundedLatticeHom.coe_comp_inf_hom, BoundedLatticeHom.coe_id, FinBddDistLat.dual_map, FinBoolAlg.hasForgetToFinPartOrd_forgetβ‚‚_obj_str, FinBoolAlg.dual_map, BoolAlg.id_apply, BddLat.dual_map, BddDistLat.hom_inv_apply, BoundedLatticeHom.subtypeVal_apply, FinBoolAlg.forgetToBoolAlgFaithful, BoundedLatticeHom.coe_comp_lattice_hom, BoundedLatticeHom.id_apply, BoolAlg.ofHom_apply, BoolAlg.forget_map, RingHom.asBoolAlg_toFun
BoundedLatticeHomClass πŸ“–CompData
6 mathmath: FrameHomClass.toBoundedLatticeHomClass, CompleteLatticeHomClass.toBoundedLatticeHomClass, HeytingHomClass.toBoundedLatticeHomClass, OrderIsoClass.toBoundedLatticeHomClass, CoheytingHomClass.toBoundedLatticeHomClass, BoundedLatticeHom.instBoundedLatticeHomClass
InfTopHom πŸ“–CompData
44 mathmath: SupBotHom.dual_comp, InfTopHom.symm_dual_id, InfTopHom.inf_apply, SupBotHom.symm_dual_comp, InfTopHom.coe_toInfHom, InfTopHom.symm_dual_comp, SemilatInfCat_dual_comp_forget_to_partOrd, InfTopHom.dual_id, InfTopHom.id_apply, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, InfTopHom.coe_id, SemilatSupCat.dual_map, SemilatInfCat.coe_forget_to_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, InfHom.withTop_toFun, InfTopHom.dual_comp, SupBotHom.dual_id, FrameHom.coe_toInfTopHom, InfHom.withTop'_toFun, bddLat_dual_comp_forget_to_semilatInfCat, InfTopHom.subtypeVal_coe, InfTopHom.comp_apply, SemilatInfCat.Iso.mk_inv_toFun, InfTopHom.coe_comp, InfTopHom.dual_apply_toFun, InfTopHom.coe_mk, SupBotHom.symm_dual_id, InfTopHom.coe_top, SemilatInfCat.dual_map, FrameHom.coe_mk, InfTopHom.dual_symm_apply_toFun, InfTopHom.ext_iff, SemilatInfCat.Iso.mk_hom_toFun, Ideal.radicalInfTopHom_apply, BoundedLatticeHom.coe_toInfTopHom, BddLat.coe_forget_to_semilatInf, InfTopHom.instInfTopHomClass, SemilatSupCat_dual_comp_forget_to_partOrd, InfTopHom.toFun_eq_coe, InfTopHom.coe_inf, InfTopHom.top_apply, InfTopHom.subtypeVal_apply, InfTopHom.coe_toTopHom, InfTopHom.id_toFun
InfTopHomClass πŸ“–CompData
5 mathmath: FrameHomClass.toInfTopHomClass, sInfHomClass.toInfTopHomClass, InfTopHom.instInfTopHomClass, BoundedLatticeHomClass.toInfTopHomClass, OrderIsoClass.toInfTopHomClass
SupBotHom πŸ“–CompData
42 mathmath: SupBotHom.dual_comp, InfTopHom.symm_dual_id, SupBotHom.symm_dual_comp, InfTopHom.symm_dual_comp, SemilatInfCat_dual_comp_forget_to_partOrd, SemilatSupCat.Iso.mk_inv_toFun, SupBotHom.coe_toBotHom, InfTopHom.dual_id, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, SupBotHom.subtypeVal_coe, SupBotHom.instSupBotHomClass, SupBotHom.bot_apply, BoundedLatticeHom.coe_toSupBotHom, SupBotHom.comp_apply, LatticeHom.withBot_toFun, SemilatSupCat.dual_map, SupBotHom.id_toFun, SupBotHom.subtypeVal_apply, SupBotHom.coe_sup, bddLat_dual_comp_forget_to_semilatSupCat, InfTopHom.dual_comp, SupBotHom.dual_id, SupBotHom.coe_comp, SupBotHom.coe_toSupHom, bddLat_dual_comp_forget_to_semilatInfCat, SupBotHom.sup_apply, SupHom.withBot_toFun, SupHom.withBot'_toFun, InfTopHom.dual_apply_toFun, SemilatSupCat.Iso.mk_hom_toFun, SupBotHom.symm_dual_id, SupBotHom.toFun_eq_coe, SemilatInfCat.dual_map, SupBotHom.ext_iff, InfTopHom.dual_symm_apply_toFun, BddLat.coe_forget_to_semilatSup, SupBotHom.coe_bot, SemilatSupCat_dual_comp_forget_to_partOrd, SemilatSupCat.coe_forget_to_partOrd, SupBotHom.id_apply, SupBotHom.coe_mk, SupBotHom.coe_id
SupBotHomClass πŸ“–CompData
4 mathmath: SupBotHom.instSupBotHomClass, OrderIsoClass.toSupBotHomClass, BoundedLatticeHomClass.toSupBotHomClass, sSupHomClass.toSupBotHomClass
instCoeTCBoundedLatticeHomOfBoundedLatticeHomClass πŸ“–CompOpβ€”
instCoeTCInfTopHomOfInfTopHomClass πŸ“–CompOpβ€”
instCoeTCSupBotHomOfSupBotHomClass πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
map_compl' πŸ“–mathematicalβ€”DFunLike.coe
Compl.compl
BooleanAlgebra.toCompl
β€”IsCompl.compl_eq
IsCompl.map
isCompl_compl
map_sdiff' πŸ“–mathematicalβ€”DFunLike.coe
BooleanAlgebra.toSDiff
β€”sdiff_eq
InfHomClass.map_inf
InfTopHomClass.toInfHomClass
BoundedLatticeHomClass.toInfTopHomClass
map_compl'
map_symmDiff' πŸ“–mathematicalβ€”DFunLike.coe
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toSDiff
β€”symmDiff.eq_1
SupHomClass.map_sup
SupBotHomClass.toSupHomClass
BoundedLatticeHomClass.toSupBotHomClass
map_sdiff'

---

← Back to Index