Documentation Verification Report

CompleteLattice

πŸ“ Source: Mathlib/Order/Hom/CompleteLattice.lean

Statistics

MetricCount
DefinitionsCompleteLatticeHom, comp, copy, dual, id, instFunLike, instInhabited, setPreimage, toBoundedLatticeHom, tosInfHom, tosSupHom, CompleteLatticeHomClass, toOrderIsoSet, FrameHom, comp, copy, id, instFunLike, instInhabited, instPartialOrder, toInfTopHom, toLatticeHom, FrameHomClass, toCompleteLatticeHom, infsInfHom, instCoeTCCompleteLatticeHomOfCompleteLatticeHomClass, instCoeTCFrameHomOfFrameHomClass, instCoeTCSInfHomOfSInfHomClass, instCoeTCSSupHomOfSSupHomClass, sInfHom, comp, copy, dual, id, instFunLike, instInhabited, instOrderTop, instPartialOrder, instTop, toFun, sInfHomClass, sSupHom, comp, copy, dual, id, instBot, instFunLike, instInhabited, instOrderBot, instPartialOrder, setImage, toFun, sSupHomClass, supsSupHom
55
Theoremscancel_left, cancel_right, coe_comp, coe_copy, coe_id, coe_mk, coe_setPreimage, coe_toBoundedLatticeHom, coe_tosInfHom, coe_tosSupHom, comp_apply, comp_assoc, comp_id, copy_eq, dual_apply_toFun, dual_comp, dual_id, dual_symm_apply_toFun, ext, ext_iff, id_apply, id_comp, instCompleteLatticeHomClass, map_sSup', setPreimage_apply, setPreimage_comp, setPreimage_id, symm_dual_comp, symm_dual_id, toFun_eq_coe, map_sSup, toBoundedLatticeHomClass, toFrameHomClass, tosInfHomClass, toOrderIsoSet_apply, toOrderIsoSet_symm_apply, cancel_left, cancel_right, coe_comp, coe_copy, coe_id, coe_mk, coe_toInfTopHom, coe_toLatticeHom, comp_apply, comp_assoc, comp_id, copy_eq, ext, ext_iff, id_apply, id_comp, instFrameHomClass, map_sSup', toFun_eq_coe, map_sSup, toBoundedLatticeHomClass, toInfTopHomClass, tosSupHomClass, toCompleteLatticeHom_toFun, toCompleteLatticeHomClass, tosInfHomClass, tosSupHomClass, image_sSup, infsInfHom_apply, map_iInf, map_iInfβ‚‚, map_iSup, map_iSupβ‚‚, cancel_left, cancel_right, coe_comp, coe_copy, coe_id, coe_mk, coe_top, comp_apply, comp_assoc, comp_id, copy_eq, dual_apply_toFun, dual_comp, dual_id, dual_symm_apply_toFun, ext, ext_iff, id_apply, id_comp, instSInfHomClass, map_sInf', symm_dual_comp, symm_dual_id, toFun_eq_coe, top_apply, map_sInf, toInfTopHomClass, bot_apply, cancel_left, cancel_right, coe_bot, coe_comp, coe_copy, coe_id, coe_mk, comp_apply, comp_assoc, comp_id, copy_eq, dual_apply_toFun, dual_comp, dual_id, dual_symm_apply_toFun, ext, ext_iff, id_apply, id_comp, instSSupHomClass, map_sSup', setImage_toFun, symm_dual_comp, symm_dual_id, toFun_eq_coe, map_sSup, toSupBotHomClass, supsSupHom_apply
125
Total180

CompleteLatticeHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
10 mathmath: cancel_right, coe_comp, comp_id, comp_apply, comp_assoc, id_comp, cancel_left, dual_comp, setPreimage_comp, symm_dual_comp
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
dual πŸ“–CompOp
7 mathmath: dual_symm_apply_toFun, dual_id, symm_dual_id, CompleteLat.dual_map, dual_apply_toFun, dual_comp, symm_dual_comp
id πŸ“–CompOp
7 mathmath: coe_id, dual_id, comp_id, id_comp, symm_dual_id, setPreimage_id, id_apply
instFunLike πŸ“–CompOp
28 mathmath: range_coe, coe_toBoundedLatticeHom, coe_tosSupHom, dual_symm_apply_toFun, coe_comp, apply_limsup_iterate, coe_id, toFun_eq_coe, setPreimage_apply, CompleteSublattice.mem_subtype, ext_iff, comp_apply, apply_liminf_iterate, CompleteSublattice.mem_map, coe_mk, CompleteSublattice.subtype_injective, CompleteLat.Iso.mk_hom, coe_tosInfHom, completeLat_dual_comp_forget_to_bddLat, instCompleteLatticeHomClass, CompleteSublattice.coe_subtype, CompleteSublattice.comap_carrier, CompleteSublattice.mem_comap, dual_apply_toFun, coe_setPreimage, CompleteSublattice.map_carrier, CompleteLat.Iso.mk_inv, id_apply
instInhabited πŸ“–CompOpβ€”
setPreimage πŸ“–CompOp
4 mathmath: setPreimage_apply, coe_setPreimage, setPreimage_id, setPreimage_comp
toBoundedLatticeHom πŸ“–CompOp
1 mathmath: coe_toBoundedLatticeHom
tosInfHom πŸ“–CompOp
6 mathmath: dual_symm_apply_toFun, toFun_eq_coe, map_sSup', coe_tosInfHom, dual_apply_toFun, OrderIso.toCompleteLatticeHom_toFun
tosSupHom πŸ“–CompOp
1 mathmath: coe_tosSupHom

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
CompleteLatticeHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
CompleteLatticeHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
CompleteLatticeHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
CompleteLatticeHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
CompleteLatticeHom
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalsInfHom.toFun
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image
DFunLike.coe
CompleteLatticeHom
instFunLike
sInfHom
sInfHom.instFunLike
β€”β€”
coe_setPreimage πŸ“–mathematicalβ€”DFunLike.coe
CompleteLatticeHom
Set
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instFunLike
setPreimage
Set.preimage
β€”β€”
coe_toBoundedLatticeHom πŸ“–mathematicalβ€”DFunLike.coe
BoundedLatticeHom
CompleteLattice.toLattice
CompleteLattice.toBoundedOrder
BoundedLatticeHom.instFunLike
toBoundedLatticeHom
CompleteLatticeHom
instFunLike
β€”β€”
coe_tosInfHom πŸ“–mathematicalβ€”DFunLike.coe
sInfHom
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
sInfHom.instFunLike
tosInfHom
CompleteLatticeHom
instFunLike
β€”β€”
coe_tosSupHom πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
sSupHom.instFunLike
tosSupHom
CompleteLatticeHom
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
CompleteLatticeHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
copy_eq πŸ“–mathematicalDFunLike.coe
CompleteLatticeHom
instFunLike
copyβ€”DFunLike.ext'
dual_apply_toFun πŸ“–mathematicalβ€”sInfHom.toFun
OrderDual
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
OrderDual.instCompleteLattice
tosInfHom
DFunLike.coe
Equiv
CompleteLatticeHom
EquivLike.toFunLike
Equiv.instEquivLike
dual
OrderDual.toDual
instFunLike
OrderDual.ofDual
β€”β€”
dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CompleteLatticeHom
OrderDual
OrderDual.instCompleteLattice
EquivLike.toFunLike
Equiv.instEquivLike
dual
comp
β€”β€”
dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CompleteLatticeHom
OrderDual
OrderDual.instCompleteLattice
EquivLike.toFunLike
Equiv.instEquivLike
dual
id
β€”β€”
dual_symm_apply_toFun πŸ“–mathematicalβ€”sInfHom.toFun
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
tosInfHom
DFunLike.coe
Equiv
CompleteLatticeHom
OrderDual
OrderDual.instCompleteLattice
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
OrderDual.toDual
instFunLike
OrderDual.ofDual
β€”β€”
ext πŸ“–β€”DFunLike.coe
CompleteLatticeHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
CompleteLatticeHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
CompleteLatticeHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instCompleteLatticeHomClass πŸ“–mathematicalβ€”CompleteLatticeHomClass
CompleteLatticeHom
instFunLike
β€”sInfHom.map_sInf'
map_sSup'
map_sSup' πŸ“–mathematicalβ€”sInfHom.toFun
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
tosInfHom
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image
β€”β€”
setPreimage_apply πŸ“–mathematicalβ€”DFunLike.coe
CompleteLatticeHom
Set
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instFunLike
setPreimage
Set.preimage
β€”β€”
setPreimage_comp πŸ“–mathematicalβ€”setPreimage
comp
Set
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
β€”β€”
setPreimage_id πŸ“–mathematicalβ€”setPreimage
id
Set
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
β€”β€”
symm_dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CompleteLatticeHom
OrderDual
OrderDual.instCompleteLattice
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
comp
β€”β€”
symm_dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CompleteLatticeHom
OrderDual
OrderDual.instCompleteLattice
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
id
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”sInfHom.toFun
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
tosInfHom
DFunLike.coe
CompleteLatticeHom
instFunLike
β€”β€”

CompleteLatticeHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_sSup πŸ“–mathematicalβ€”DFunLike.coe
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image
β€”β€”
toBoundedLatticeHomClass πŸ“–mathematicalβ€”BoundedLatticeHomClass
CompleteLattice.toLattice
CompleteLattice.toBoundedOrder
β€”sSupHomClass.toSupBotHomClass
FrameHomClass.tosSupHomClass
toFrameHomClass
sInfHomClass.toInfTopHomClass
tosInfHomClass
SupBotHomClass.toSupHomClass
InfHomClass.map_inf
InfTopHomClass.toInfHomClass
InfTopHomClass.map_top
SupBotHomClass.map_bot
toFrameHomClass πŸ“–mathematicalβ€”FrameHomClassβ€”sInfHomClass.toInfTopHomClass
tosInfHomClass
map_sSup
tosInfHomClass πŸ“–mathematicalβ€”sInfHomClass
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”β€”

Equiv

Definitions

NameCategoryTheorems
toOrderIsoSet πŸ“–CompOp
2 mathmath: toOrderIsoSet_symm_apply, toOrderIsoSet_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toOrderIsoSet_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Set
Set.instLE
RelIso.instFunLike
toOrderIsoSet
Set.image
Equiv
EquivLike.toFunLike
instEquivLike
β€”β€”
toOrderIsoSet_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Set
Set.instLE
RelIso.instFunLike
RelIso.symm
toOrderIsoSet
Set.image
Equiv
EquivLike.toFunLike
instEquivLike
symm
β€”β€”

FrameHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
10 mathmath: comp_id, id_comp, cancel_left, coe_comp, Frm.hom_comp, TopologicalSpace.Opens.comap_comp, Frm.ofHom_comp, cancel_right, comp_assoc, comp_apply
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
id πŸ“–CompOp
7 mathmath: comp_id, id_comp, coe_id, Frm.ofHom_id, Frm.hom_id, TopologicalSpace.Opens.comap_id, id_apply
instFunLike πŸ“–CompOp
45 mathmath: Frm.coe_comp, TopologicalSpace.Opens.comap_mono, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_preimage_basicOpen, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap_apply, Locale.localePointOfSpacePoint_toFun, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap, Homeomorph.opensCongr_apply, Nucleus.restrict_toFun, TopologicalSpace.Opens.comap_comap, TopologicalSpace.IsOpenCover.comap, TopologicalSpace.Opens.mem_comap, TopologicalSpace.Opens.frameHom_toFun, IsLocalization.mapFrameHom_apply, Frm.ext_iff, MeasureTheory.Content.is_mul_left_invariant_innerContent, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap_assoc, coe_toLatticeHom, coe_comp, Submodule.IsLocalizedModule.localizedβ‚€FrameHom_apply, coe_id, Frm.id_apply, Frm.coe_id, coe_toInfTopHom, Frm.inv_hom_apply, Locale.PT.isOpen_iff, Frm.hom_inv_apply, Locale.openOfElementHom_toFun, Submodule.IsLocalizedModule.localized'FrameHom_apply, PrimeSpectrum.comap_basicOpen, coe_mk, MeasureTheory.Content.is_add_left_invariant_innerContent, TopologicalSpace.Opens.coe_comap, Frm.ofHom_apply, ext_iff, Nucleus.restrict_toSublocale, Frm.comp_apply, AlgebraicGeometry.StructureSheaf.comap_basicOpen, toFun_eq_coe, Frm.forget_map, MeasureTheory.Content.innerContent_comap, Sublocale.restrict_of_mem, id_apply, Sublocale.toNucleus_apply, comp_apply, instFrameHomClass
instInhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
toInfTopHom πŸ“–CompOp
3 mathmath: coe_toInfTopHom, map_sSup', toFun_eq_coe
toLatticeHom πŸ“–CompOp
1 mathmath: coe_toLatticeHom

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
FrameHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
FrameHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
FrameHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
FrameHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
FrameHom
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalInfHom.toFun
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
InfTopHom.toInfHom
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image
DFunLike.coe
FrameHom
instFunLike
InfTopHom
InfTopHom.instFunLike
β€”β€”
coe_toInfTopHom πŸ“–mathematicalβ€”DFunLike.coe
InfTopHom
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
InfTopHom.instFunLike
toInfTopHom
FrameHom
instFunLike
β€”β€”
coe_toLatticeHom πŸ“–mathematicalβ€”DFunLike.coe
LatticeHom
CompleteLattice.toLattice
LatticeHom.instFunLike
toLatticeHom
FrameHom
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
FrameHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
copy_eq πŸ“–mathematicalDFunLike.coe
FrameHom
instFunLike
copyβ€”DFunLike.ext'
ext πŸ“–β€”DFunLike.coe
FrameHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
FrameHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
FrameHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instFrameHomClass πŸ“–mathematicalβ€”FrameHomClass
FrameHom
instFunLike
β€”InfHom.map_inf'
InfTopHom.map_top'
map_sSup'
map_sSup' πŸ“–mathematicalβ€”InfHom.toFun
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
InfTopHom.toInfHom
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
toInfTopHom
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”InfHom.toFun
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
InfTopHom.toInfHom
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
toInfTopHom
DFunLike.coe
FrameHom
instFunLike
β€”β€”

FrameHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_sSup πŸ“–mathematicalβ€”DFunLike.coe
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set.image
β€”β€”
toBoundedLatticeHomClass πŸ“–mathematicalβ€”BoundedLatticeHomClass
CompleteLattice.toLattice
CompleteLattice.toBoundedOrder
β€”sSupHomClass.toSupBotHomClass
tosSupHomClass
SupBotHomClass.toSupHomClass
InfHomClass.map_inf
InfTopHomClass.toInfHomClass
toInfTopHomClass
InfTopHomClass.map_top
SupBotHomClass.map_bot
toInfTopHomClass πŸ“–mathematicalβ€”InfTopHomClass
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
tosSupHomClass πŸ“–mathematicalβ€”sSupHomClass
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”map_sSup

OrderIso

Definitions

NameCategoryTheorems
toCompleteLatticeHom πŸ“–CompOp
1 mathmath: toCompleteLatticeHom_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
toCompleteLatticeHom_toFun πŸ“–mathematicalβ€”sInfHom.toFun
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
CompleteLatticeHom.tosInfHom
toCompleteLatticeHom
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
instFunLikeOrderIso
β€”β€”

OrderIsoClass

Theorems

NameKindAssumesProvesValidatesDepends On
toCompleteLatticeHomClass πŸ“–mathematicalβ€”CompleteLatticeHomClass
EquivLike.toFunLike
β€”tosSupHomClass
tosInfHomClass
sSupHomClass.map_sSup
tosInfHomClass πŸ“–mathematicalβ€”sInfHomClass
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
EquivLike.toFunLike
β€”BoundedOrderHomClass.toRelHomClass
BoundedLatticeHomClass.toBoundedOrderHomClass
toBoundedLatticeHomClass
eq_of_forall_le_iff
tosSupHomClass πŸ“–mathematicalβ€”sSupHomClass
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
EquivLike.toFunLike
β€”BoundedOrderHomClass.toRelHomClass
BoundedLatticeHomClass.toBoundedOrderHomClass
toBoundedLatticeHomClass
eq_of_forall_ge_iff

Set

Theorems

NameKindAssumesProvesValidatesDepends On
image_sSup πŸ“–mathematicalβ€”image
SupSet.sSup
Set
instSupSet
β€”image_sUnion

(root)

Definitions

NameCategoryTheorems
CompleteLatticeHom πŸ“–CompData
33 mathmath: CompleteLatticeHom.range_coe, CompleteLatticeHom.coe_toBoundedLatticeHom, CompleteLatticeHom.coe_tosSupHom, CompleteLatticeHom.dual_symm_apply_toFun, CompleteLatticeHom.coe_comp, CompleteLatticeHom.apply_limsup_iterate, CompleteLatticeHom.coe_id, CompleteLatticeHom.dual_id, CompleteLatticeHom.toFun_eq_coe, CompleteLatticeHom.setPreimage_apply, CompleteSublattice.mem_subtype, CompleteLatticeHom.ext_iff, CompleteLatticeHom.comp_apply, CompleteLatticeHom.apply_liminf_iterate, CompleteSublattice.mem_map, CompleteLatticeHom.coe_mk, CompleteLatticeHom.symm_dual_id, CompleteLat.dual_map, CompleteSublattice.subtype_injective, CompleteLat.Iso.mk_hom, CompleteLatticeHom.coe_tosInfHom, completeLat_dual_comp_forget_to_bddLat, CompleteLatticeHom.instCompleteLatticeHomClass, CompleteSublattice.coe_subtype, CompleteSublattice.comap_carrier, CompleteSublattice.mem_comap, CompleteLatticeHom.dual_apply_toFun, CompleteLatticeHom.coe_setPreimage, CompleteLatticeHom.dual_comp, CompleteSublattice.map_carrier, CompleteLatticeHom.symm_dual_comp, CompleteLat.Iso.mk_inv, CompleteLatticeHom.id_apply
CompleteLatticeHomClass πŸ“–CompData
2 mathmath: CompleteLatticeHom.instCompleteLatticeHomClass, OrderIsoClass.toCompleteLatticeHomClass
FrameHom πŸ“–CompData
45 mathmath: Frm.coe_comp, TopologicalSpace.Opens.comap_mono, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_preimage_basicOpen, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap_apply, Locale.localePointOfSpacePoint_toFun, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap, Homeomorph.opensCongr_apply, Nucleus.restrict_toFun, TopologicalSpace.Opens.comap_comap, TopologicalSpace.IsOpenCover.comap, TopologicalSpace.Opens.mem_comap, TopologicalSpace.Opens.frameHom_toFun, IsLocalization.mapFrameHom_apply, Frm.ext_iff, MeasureTheory.Content.is_mul_left_invariant_innerContent, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap_assoc, FrameHom.coe_toLatticeHom, FrameHom.coe_comp, Submodule.IsLocalizedModule.localizedβ‚€FrameHom_apply, FrameHom.coe_id, Frm.id_apply, Frm.coe_id, FrameHom.coe_toInfTopHom, Frm.inv_hom_apply, Frm.hom_inv_apply, Locale.openOfElementHom_toFun, Submodule.IsLocalizedModule.localized'FrameHom_apply, PrimeSpectrum.comap_basicOpen, FrameHom.coe_mk, TopologicalSpace.Opens.comap_injective, MeasureTheory.Content.is_add_left_invariant_innerContent, TopologicalSpace.Opens.coe_comap, Frm.ofHom_apply, FrameHom.ext_iff, Nucleus.restrict_toSublocale, Frm.comp_apply, AlgebraicGeometry.StructureSheaf.comap_basicOpen, FrameHom.toFun_eq_coe, Frm.forget_map, MeasureTheory.Content.innerContent_comap, Sublocale.restrict_of_mem, FrameHom.id_apply, Sublocale.toNucleus_apply, FrameHom.comp_apply, FrameHom.instFrameHomClass
FrameHomClass πŸ“–CompData
2 mathmath: CompleteLatticeHomClass.toFrameHomClass, FrameHom.instFrameHomClass
infsInfHom πŸ“–CompOp
1 mathmath: infsInfHom_apply
instCoeTCCompleteLatticeHomOfCompleteLatticeHomClass πŸ“–CompOpβ€”
instCoeTCFrameHomOfFrameHomClass πŸ“–CompOpβ€”
instCoeTCSInfHomOfSInfHomClass πŸ“–CompOpβ€”
instCoeTCSSupHomOfSSupHomClass πŸ“–CompOpβ€”
sInfHom πŸ“–CompData
29 mathmath: sInfHom.le_apply_bliminf, sSupHom.symm_dual_id, sInfHom.dual_id, LowerSet.coe_iicsInfHom, sInfHom.continuous, LowerSet.iicsInfHom_apply, sSupHom.dual_symm_apply_toFun, sInfHom.dual_apply_toFun, sInfHom.toFun_eq_coe, sSupHom.dual_apply_toFun, CompleteLatticeHom.coe_mk, sInfHom.coe_comp, infsInfHom_apply, sInfHom.coe_id, sSupHom.dual_comp, sInfHom.dual_comp, sInfHom.dual_symm_apply_toFun, sInfHom.id_apply, sInfHom.coe_top, CompleteLatticeHom.coe_tosInfHom, sInfHom.symm_dual_comp, sSupHom.symm_dual_comp, sInfHom.ext_iff, sInfHom.comp_apply, sSupHom.dual_id, sInfHom.instSInfHomClass, sInfHom.top_apply, sInfHom.coe_mk, sInfHom.symm_dual_id
sInfHomClass πŸ“–CompData
3 mathmath: OrderIsoClass.tosInfHomClass, sInfHom.instSInfHomClass, CompleteLatticeHomClass.tosInfHomClass
sSupHom πŸ“–CompData
29 mathmath: sSupHom.instSSupHomClass, CompleteLatticeHom.coe_tosSupHom, sSupHom.symm_dual_id, sInfHom.dual_id, sSupHom.coe_bot, sSupHom.bot_apply, sSupHom.dual_symm_apply_toFun, sInfHom.dual_apply_toFun, sSupHom.dual_apply_toFun, sSupHom.comp_apply, supsSupHom_apply, sSupHom.coe_id, UpperSet.coe_icisSupHom, sSupHom.continuous, sSupHom.toFun_eq_coe, sSupHom.dual_comp, sInfHom.dual_comp, UpperSet.icisSupHom_apply, sInfHom.dual_symm_apply_toFun, sSupHom.id_apply, sInfHom.symm_dual_comp, sSupHom.symm_dual_comp, sSupHom.setImage_toFun, sSupHom.ext_iff, sSupHom.apply_blimsup_le, sSupHom.dual_id, sSupHom.coe_mk, sSupHom.coe_comp, sInfHom.symm_dual_id
sSupHomClass πŸ“–CompData
3 mathmath: sSupHom.instSSupHomClass, OrderIsoClass.tosSupHomClass, FrameHomClass.tosSupHomClass
supsSupHom πŸ“–CompOp
1 mathmath: supsSupHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
infsInfHom_apply πŸ“–mathematicalβ€”DFunLike.coe
sInfHom
Prod.infSet
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
sInfHom.instFunLike
infsInfHom
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
β€”β€”
map_iInf πŸ“–mathematicalβ€”DFunLike.coe
iInf
β€”sInfHomClass.map_sInf
map_iInfβ‚‚ πŸ“–mathematicalβ€”DFunLike.coe
iInf
β€”map_iInf
map_iSup πŸ“–mathematicalβ€”DFunLike.coe
iSup
β€”sSupHomClass.map_sSup
map_iSupβ‚‚ πŸ“–mathematicalβ€”DFunLike.coe
iSup
β€”map_iSup
supsSupHom_apply πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
Prod.supSet
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
sSupHom.instFunLike
supsSupHom
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
β€”β€”

sInfHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
11 mathmath: comp_id, id_comp, cancel_right, cancel_left, coe_comp, sSupHom.dual_comp, dual_comp, comp_assoc, symm_dual_comp, sSupHom.symm_dual_comp, comp_apply
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
dual πŸ“–CompOp
6 mathmath: dual_id, dual_apply_toFun, dual_comp, dual_symm_apply_toFun, symm_dual_comp, symm_dual_id
id πŸ“–CompOp
8 mathmath: sSupHom.symm_dual_id, dual_id, comp_id, id_comp, coe_id, id_apply, sSupHom.dual_id, symm_dual_id
instFunLike πŸ“–CompOp
19 mathmath: le_apply_bliminf, LowerSet.coe_iicsInfHom, continuous, LowerSet.iicsInfHom_apply, sSupHom.dual_symm_apply_toFun, dual_apply_toFun, toFun_eq_coe, CompleteLatticeHom.coe_mk, coe_comp, infsInfHom_apply, coe_id, id_apply, coe_top, CompleteLatticeHom.coe_tosInfHom, ext_iff, comp_apply, instSInfHomClass, top_apply, coe_mk
instInhabited πŸ“–CompOpβ€”
instOrderTop πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
instTop πŸ“–CompOp
2 mathmath: coe_top, top_apply
toFun πŸ“–CompOp
9 mathmath: CompleteLatticeHom.dual_symm_apply_toFun, CompleteLatticeHom.toFun_eq_coe, CompleteLatticeHom.map_sSup', toFun_eq_coe, sSupHom.dual_apply_toFun, dual_symm_apply_toFun, CompleteLatticeHom.dual_apply_toFun, map_sInf', OrderIso.toCompleteLatticeHom_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
sInfHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
sInfHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
sInfHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
sInfHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
sInfHom
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalInfSet.sInf
Set.image
DFunLike.coe
sInfHom
instFunLike
β€”β€”
coe_top πŸ“–mathematicalβ€”DFunLike.coe
sInfHom
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
instFunLike
Top.top
instTop
Pi.instTopForall
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
sInfHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
copy_eq πŸ“–mathematicalDFunLike.coe
sInfHom
instFunLike
copyβ€”DFunLike.ext'
dual_apply_toFun πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
OrderDual
OrderDual.supSet
sSupHom.instFunLike
Equiv
sInfHom
EquivLike.toFunLike
Equiv.instEquivLike
dual
OrderDual.toDual
instFunLike
OrderDual.ofDual
β€”β€”
dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
sInfHom
sSupHom
OrderDual
OrderDual.supSet
EquivLike.toFunLike
Equiv.instEquivLike
dual
comp
sSupHom.comp
β€”β€”
dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
sInfHom
sSupHom
OrderDual
OrderDual.supSet
EquivLike.toFunLike
Equiv.instEquivLike
dual
id
sSupHom.id
β€”β€”
dual_symm_apply_toFun πŸ“–mathematicalβ€”toFun
DFunLike.coe
Equiv
sSupHom
OrderDual
OrderDual.supSet
sInfHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
OrderDual.ofDual
sSupHom.instFunLike
OrderDual.toDual
β€”β€”
ext πŸ“–β€”DFunLike.coe
sInfHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
sInfHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
sInfHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instSInfHomClass πŸ“–mathematicalβ€”sInfHomClass
sInfHom
instFunLike
β€”map_sInf'
map_sInf' πŸ“–mathematicalβ€”toFun
InfSet.sInf
Set.image
β€”β€”
symm_dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
sSupHom
OrderDual
OrderDual.supSet
sInfHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
sSupHom.comp
comp
β€”β€”
symm_dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
sSupHom
OrderDual
OrderDual.supSet
sInfHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
sSupHom.id
id
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
sInfHom
instFunLike
β€”β€”
top_apply πŸ“–mathematicalβ€”DFunLike.coe
sInfHom
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
instFunLike
Top.top
instTop
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”

sInfHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_sInf πŸ“–mathematicalβ€”DFunLike.coe
InfSet.sInf
Set.image
β€”β€”
toInfTopHomClass πŸ“–mathematicalβ€”InfTopHomClass
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”sInf_pair
map_sInf
Set.image_pair
sInf_insert
sInf_singleton
sInf_empty
Set.image_empty

sSupHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
11 mathmath: comp_apply, comp_id, cancel_left, dual_comp, sInfHom.dual_comp, cancel_right, sInfHom.symm_dual_comp, symm_dual_comp, id_comp, comp_assoc, coe_comp
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
dual πŸ“–CompOp
6 mathmath: symm_dual_id, dual_symm_apply_toFun, dual_apply_toFun, dual_comp, symm_dual_comp, dual_id
id πŸ“–CompOp
8 mathmath: symm_dual_id, sInfHom.dual_id, comp_id, coe_id, id_apply, id_comp, dual_id, sInfHom.symm_dual_id
instBot πŸ“–CompOp
2 mathmath: coe_bot, bot_apply
instFunLike πŸ“–CompOp
21 mathmath: instSSupHomClass, CompleteLatticeHom.coe_tosSupHom, coe_bot, bot_apply, dual_symm_apply_toFun, sInfHom.dual_apply_toFun, dual_apply_toFun, comp_apply, supsSupHom_apply, coe_id, UpperSet.coe_icisSupHom, continuous, toFun_eq_coe, UpperSet.icisSupHom_apply, sInfHom.dual_symm_apply_toFun, id_apply, setImage_toFun, ext_iff, apply_blimsup_le, coe_mk, coe_comp
instInhabited πŸ“–CompOpβ€”
instOrderBot πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
setImage πŸ“–CompOp
1 mathmath: setImage_toFun
toFun πŸ“–CompOp
2 mathmath: toFun_eq_coe, map_sSup'

Theorems

NameKindAssumesProvesValidatesDepends On
bot_apply πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instFunLike
Bot.bot
instBot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”β€”
cancel_left πŸ“–mathematicalDFunLike.coe
sSupHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
sSupHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_bot πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instFunLike
Bot.bot
instBot
Pi.instBotForall
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”β€”
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
sSupHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalSupSet.sSup
Set.image
DFunLike.coe
sSupHom
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
copy_eq πŸ“–mathematicalDFunLike.coe
sSupHom
instFunLike
copyβ€”DFunLike.ext'
dual_apply_toFun πŸ“–mathematicalβ€”sInfHom.toFun
OrderDual
OrderDual.infSet
DFunLike.coe
Equiv
sSupHom
sInfHom
EquivLike.toFunLike
Equiv.instEquivLike
dual
OrderDual.toDual
instFunLike
OrderDual.ofDual
β€”β€”
dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
sSupHom
sInfHom
OrderDual
OrderDual.infSet
EquivLike.toFunLike
Equiv.instEquivLike
dual
comp
sInfHom.comp
β€”β€”
dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
sSupHom
sInfHom
OrderDual
OrderDual.infSet
EquivLike.toFunLike
Equiv.instEquivLike
dual
id
sInfHom.id
β€”β€”
dual_symm_apply_toFun πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
instFunLike
Equiv
sInfHom
OrderDual
OrderDual.infSet
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
OrderDual.ofDual
sInfHom.instFunLike
OrderDual.toDual
β€”β€”
ext πŸ“–β€”DFunLike.coe
sSupHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instSSupHomClass πŸ“–mathematicalβ€”sSupHomClass
sSupHom
instFunLike
β€”map_sSup'
map_sSup' πŸ“–mathematicalβ€”toFun
SupSet.sSup
Set.image
β€”β€”
setImage_toFun πŸ“–mathematicalβ€”DFunLike.coe
sSupHom
Set
Set.instSupSet
instFunLike
setImage
Set.image
β€”β€”
symm_dual_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
sInfHom
OrderDual
OrderDual.infSet
sSupHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
sInfHom.comp
comp
β€”β€”
symm_dual_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
sInfHom
OrderDual
OrderDual.infSet
sSupHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
sInfHom.id
id
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
sSupHom
instFunLike
β€”β€”

sSupHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_sSup πŸ“–mathematicalβ€”DFunLike.coe
SupSet.sSup
Set.image
β€”β€”
toSupBotHomClass πŸ“–mathematicalβ€”SupBotHomClass
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”sSup_pair
map_sSup
Set.image_pair
sSup_insert
sSup_singleton
sSup_empty
Set.image_empty

---

← Back to Index