CompleteLattice
π Source: Mathlib/Order/Hom/CompleteLattice.lean
Statistics
CompleteLatticeHom
Definitions
| Name | Category | Theorems |
|---|---|---|
comp π | CompOp | 10 mathmath:cancel_right, coe_comp, comp_id, comp_apply, comp_assoc, id_comp, cancel_left, dual_comp, setPreimage_comp, symm_dual_comp |
copy π | CompOp | |
dual π | CompOp | |
id π | CompOp | |
instFunLike π | CompOp | 28 mathmath:range_coe, coe_toBoundedLatticeHom, coe_tosSupHom, dual_symm_apply_toFun, coe_comp, apply_limsup_iterate, coe_id, toFun_eq_coe, setPreimage_apply, CompleteSublattice.mem_subtype, ext_iff, comp_apply, apply_liminf_iterate, CompleteSublattice.mem_map, coe_mk, CompleteSublattice.subtype_injective, CompleteLat.Iso.mk_hom, coe_tosInfHom, completeLat_dual_comp_forget_to_bddLat, instCompleteLatticeHomClass, CompleteSublattice.coe_subtype, CompleteSublattice.comap_carrier, CompleteSublattice.mem_comap, dual_apply_toFun, coe_setPreimage, CompleteSublattice.map_carrier, CompleteLat.Iso.mk_inv, id_apply |
instInhabited π | CompOp | β |
setPreimage π | CompOp | |
toBoundedLatticeHom π | CompOp | |
tosInfHom π | CompOp | |
tosSupHom π | CompOp |
Theorems
CompleteLatticeHomClass
Theorems
Equiv
Definitions
| Name | Category | Theorems |
|---|---|---|
toOrderIsoSet π | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
toOrderIsoSet_apply π | mathematical | β | DFunLike.coeRelIsoSetSet.instLERelIso.instFunLiketoOrderIsoSetSet.imageEquivEquivLike.toFunLikeinstEquivLike | β | β |
toOrderIsoSet_symm_apply π | mathematical | β | DFunLike.coeRelIsoSetSet.instLERelIso.instFunLikeRelIso.symmtoOrderIsoSetSet.imageEquivEquivLike.toFunLikeinstEquivLikesymm | β | β |
FrameHom
Definitions
Theorems
FrameHomClass
Theorems
OrderIso
Definitions
| Name | Category | Theorems |
|---|---|---|
toCompleteLatticeHom π | CompOp |
Theorems
OrderIsoClass
Theorems
Set
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
image_sSup π | mathematical | β | imageSupSet.sSupSetinstSupSet | β | image_sUnion |
(root)
Definitions
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
infsInfHom_apply π | mathematical | β | DFunLike.coesInfHomProd.infSetCompleteSemilatticeInf.toInfSetCompleteLattice.toCompleteSemilatticeInfsInfHom.instFunLikeinfsInfHomSemilatticeInf.toMinLattice.toSemilatticeInfCompleteLattice.toLattice | β | β |
map_iInf π | mathematical | β | DFunLike.coeiInf | β | sInfHomClass.map_sInf |
map_iInfβ π | mathematical | β | DFunLike.coeiInf | β | map_iInf |
map_iSup π | mathematical | β | DFunLike.coeiSup | β | sSupHomClass.map_sSup |
map_iSupβ π | mathematical | β | DFunLike.coeiSup | β | map_iSup |
supsSupHom_apply π | mathematical | β | DFunLike.coesSupHomProd.supSetCompleteSemilatticeSup.toSupSetCompleteLattice.toCompleteSemilatticeSupsSupHom.instFunLikesupsSupHomSemilatticeSup.toMaxLattice.toSemilatticeSupCompleteLattice.toLattice | β | β |
sInfHom
Definitions
| Name | Category | Theorems |
|---|---|---|
comp π | CompOp | 11 mathmath:comp_id, id_comp, cancel_right, cancel_left, coe_comp, sSupHom.dual_comp, dual_comp, comp_assoc, symm_dual_comp, sSupHom.symm_dual_comp, comp_apply |
copy π | CompOp | |
dual π | CompOp | 6 mathmath:dual_id, dual_apply_toFun, dual_comp, dual_symm_apply_toFun, symm_dual_comp, symm_dual_id |
id π | CompOp | 8 mathmath:sSupHom.symm_dual_id, dual_id, comp_id, id_comp, coe_id, id_apply, sSupHom.dual_id, symm_dual_id |
instFunLike π | CompOp | 19 mathmath:le_apply_bliminf, LowerSet.coe_iicsInfHom, continuous, LowerSet.iicsInfHom_apply, sSupHom.dual_symm_apply_toFun, dual_apply_toFun, toFun_eq_coe, CompleteLatticeHom.coe_mk, coe_comp, infsInfHom_apply, coe_id, id_apply, coe_top, CompleteLatticeHom.coe_tosInfHom, ext_iff, comp_apply, instSInfHomClass, top_apply, coe_mk |
instInhabited π | CompOp | β |
instOrderTop π | CompOp | β |
instPartialOrder π | CompOp | β |
instTop π | CompOp | |
toFun π | CompOp |
Theorems
sInfHomClass
Theorems
sSupHom
Definitions
| Name | Category | Theorems |
|---|---|---|
comp π | CompOp | 11 mathmath:comp_apply, comp_id, cancel_left, dual_comp, sInfHom.dual_comp, cancel_right, sInfHom.symm_dual_comp, symm_dual_comp, id_comp, comp_assoc, coe_comp |
copy π | CompOp | |
dual π | CompOp | 6 mathmath:symm_dual_id, dual_symm_apply_toFun, dual_apply_toFun, dual_comp, symm_dual_comp, dual_id |
id π | CompOp | 8 mathmath:symm_dual_id, sInfHom.dual_id, comp_id, coe_id, id_apply, id_comp, dual_id, sInfHom.symm_dual_id |
instBot π | CompOp | |
instFunLike π | CompOp | 21 mathmath:instSSupHomClass, CompleteLatticeHom.coe_tosSupHom, coe_bot, bot_apply, dual_symm_apply_toFun, sInfHom.dual_apply_toFun, dual_apply_toFun, comp_apply, supsSupHom_apply, coe_id, UpperSet.coe_icisSupHom, continuous, toFun_eq_coe, UpperSet.icisSupHom_apply, sInfHom.dual_symm_apply_toFun, id_apply, setImage_toFun, ext_iff, apply_blimsup_le, coe_mk, coe_comp |
instInhabited π | CompOp | β |
instOrderBot π | CompOp | β |
instPartialOrder π | CompOp | β |
setImage π | CompOp | |
toFun π | CompOp |
Theorems
sSupHomClass
Theorems
---