Documentation Verification Report

Lattice

📁 Source: Mathlib/Order/Hom/Lattice.lean

Statistics

MetricCount
DefinitionsInfHom, comp, const, copy, dual, id, instBot, instBoundedOrder, instFunLike, instInhabited, instMin, instOrderBot, instOrderTop, instPartialOrder, instSemilatticeInf, instTop, subtypeVal, toFun, InfHomClass, LatticeHom, comp, copy, dual, fst, id, instFunLike, instInhabited, snd, subtypeVal, toInfHom, toSupHom, LatticeHomClass, toLatticeHom, evalLatticeHom, SupHom, comp, const, copy, dual, id, instBot, instBoundedOrder, instFunLike, instInhabited, instMax, instOrderBot, instOrderTop, instPartialOrder, instSemilatticeSup, instTop, subtypeVal, toFun, SupHomClass, instCoeTCInfHomOfInfHomClass, instCoeTCLatticeHomOfLatticeHomClass, instCoeTCSupHomOfSupHomClass, orderEmbeddingOfInjective
57
Theoremsbot_apply, cancel_left, cancel_right, coe_bot, coe_comp, coe_const, coe_copy, coe_id, coe_inf, coe_mk, coe_top, comp_apply, comp_assoc, comp_id, const_apply, copy_eq, dual_apply_toFun, dual_comp, dual_id, dual_symm_apply_toFun, ext, ext_iff, id_apply, id_comp, inf_apply, instInfHomClass, map_inf', mk_le_mk, subtypeVal_apply, subtypeVal_coe, symm_dual_comp, symm_dual_id, toFun_eq_coe, top_apply, map_inf, toOrderHomClass, cancel_left, cancel_right, coe_comp, coe_comp_inf_hom, coe_comp_inf_hom', coe_comp_sup_hom, coe_comp_sup_hom', coe_copy, coe_fst, coe_id, coe_mk, coe_snd, coe_toInfHom, coe_toSupHom, comp_apply, comp_assoc, comp_id, copy_eq, dual_apply_toFun, dual_comp, dual_id, dual_symm_apply_toFun, ext, ext_iff, fst_apply, id_apply, id_comp, instLatticeHomClass, map_inf', snd_apply, subtypeVal_apply, subtypeVal_coe, symm_dual_comp, symm_dual_id, toFun_eq_coe, map_inf, toInfHomClass, toSupHomClass, coe_to_lattice_hom, toLatticeHomClass, to_lattice_hom_apply, toInfHomClass, toLatticeHomClass, toSupHomClass, coe_evalLatticeHom, evalLatticeHom_apply, bot_apply, cancel_left, cancel_right, coe_bot, coe_comp, coe_const, coe_copy, coe_id, coe_mk, coe_sup, coe_top, comp_apply, comp_assoc, comp_id, const_apply, copy_eq, dual_apply_toFun, dual_comp, dual_id, dual_symm_apply_toFun, ext, ext_iff, id_apply, id_comp, instSupHomClass, map_sup', mk_le_mk, subtypeVal_apply, subtypeVal_coe, sup_apply, symm_dual_comp, symm_dual_id, toFun_eq_coe, top_apply, map_sup, toOrderHomClass, orderEmbeddingOfInjective_apply
119
Total176

InfHom

Definitions

NameCategoryTheorems
comp 📖CompOp
17 mathmath: comp_apply, symm_dual_comp, id_comp, comp_id, SupHom.symm_dual_comp, coe_comp, SupHom.dual_comp, dual_comp, comp_assoc, LatticeHom.coe_comp_inf_hom, cancel_left, withBot_comp, LatticeHom.coe_comp_inf_hom', BoundedLatticeHom.coe_comp_inf_hom', BoundedLatticeHom.coe_comp_inf_hom, cancel_right, withTop_comp
const 📖CompOp
2 mathmath: const_apply, coe_const
copy 📖CompOp
2 mathmath: copy_eq, coe_copy
dual 📖CompOp
6 mathmath: symm_dual_comp, dual_apply_toFun, dual_id, dual_symm_apply_toFun, dual_comp, symm_dual_id
id 📖CompOp
10 mathmath: SupHom.dual_id, id_comp, comp_id, dual_id, id_apply, SupHom.symm_dual_id, withTop_id, symm_dual_id, coe_id, withBot_id
instBot 📖CompOp
2 mathmath: bot_apply, coe_bot
instBoundedOrder 📖CompOp
instFunLike 📖CompOp
33 mathmath: top_apply, Nucleus.coe_toInfHom, comp_apply, bot_apply, InfTopHom.coe_toInfHom, Nucleus.coe_mk, coe_comp, dual_apply_toFun, instInfHomClass, id_apply, dual_symm_apply_toFun, const_apply, withBot_toFun, withTop_toFun, coe_mk, withTop'_toFun, LowerSet.iicInfHom_apply, inf_apply, ext_iff, withBot'_toFun, coe_const, InfTopHom.coe_mk, LatticeHom.coe_toInfHom, LowerSet.coe_iicInfHom, coe_id, subtypeVal_coe, coe_bot, coe_inf, SupHom.dual_symm_apply_toFun, toFun_eq_coe, coe_top, SupHom.dual_apply_toFun, subtypeVal_apply
instInhabited 📖CompOp
instMin 📖CompOp
2 mathmath: inf_apply, coe_inf
instOrderBot 📖CompOp
instOrderTop 📖CompOp
instPartialOrder 📖CompOp
2 mathmath: Nucleus.mk_le_mk, mk_le_mk
instSemilatticeInf 📖CompOp
instTop 📖CompOp
2 mathmath: top_apply, coe_top
subtypeVal 📖CompOp
2 mathmath: subtypeVal_coe, subtypeVal_apply
toFun 📖CompOp
9 mathmath: Nucleus.idempotent', FrameHom.map_sSup', InfTopHom.map_top', Nucleus.toFun_eq_coe, FrameHom.toFun_eq_coe, InfTopHom.toFun_eq_coe, toFun_eq_coe, map_inf', Nucleus.le_apply'

Theorems

NameKindAssumesProvesValidatesDepends On
bot_apply 📖mathematicalDFunLike.coe
InfHom
SemilatticeInf.toMin
instFunLike
Bot.bot
instBot
cancel_left 📖mathematicalDFunLike.coe
InfHom
instFunLike
compext
comp_apply
cancel_right 📖mathematicalDFunLike.coe
InfHom
instFunLike
compext
Function.Surjective.forall
DFunLike.ext_iff
coe_bot 📖mathematicalDFunLike.coe
InfHom
SemilatticeInf.toMin
instFunLike
Bot.bot
instBot
Pi.instBotForall
coe_comp 📖mathematicalDFunLike.coe
InfHom
instFunLike
comp
coe_const 📖mathematicalDFunLike.coe
InfHom
SemilatticeInf.toMin
instFunLike
const
coe_copy 📖mathematicalDFunLike.coe
InfHom
instFunLike
copy
coe_id 📖mathematicalDFunLike.coe
InfHom
instFunLike
id
coe_inf 📖mathematicalDFunLike.coe
InfHom
SemilatticeInf.toMin
instFunLike
instMin
Pi.instMinForall_mathlib
coe_mk 📖mathematicalDFunLike.coe
InfHom
instFunLike
coe_top 📖mathematicalDFunLike.coe
InfHom
SemilatticeInf.toMin
instFunLike
Top.top
instTop
Pi.instTopForall
comp_apply 📖mathematicalDFunLike.coe
InfHom
instFunLike
comp
comp_assoc 📖mathematicalcomp
comp_id 📖mathematicalcomp
id
const_apply 📖mathematicalDFunLike.coe
InfHom
SemilatticeInf.toMin
instFunLike
const
copy_eq 📖mathematicalDFunLike.coe
InfHom
instFunLike
copyDFunLike.ext'
dual_apply_toFun 📖mathematicalDFunLike.coe
SupHom
OrderDual
OrderDual.instSup
SupHom.instFunLike
Equiv
InfHom
EquivLike.toFunLike
Equiv.instEquivLike
dual
instFunLike
dual_comp 📖mathematicalDFunLike.coe
Equiv
InfHom
SupHom
OrderDual
OrderDual.instSup
EquivLike.toFunLike
Equiv.instEquivLike
dual
comp
SupHom.comp
dual_id 📖mathematicalDFunLike.coe
Equiv
InfHom
SupHom
OrderDual
OrderDual.instSup
EquivLike.toFunLike
Equiv.instEquivLike
dual
id
SupHom.id
dual_symm_apply_toFun 📖mathematicalDFunLike.coe
InfHom
instFunLike
Equiv
SupHom
OrderDual
OrderDual.instSup
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
SupHom.instFunLike
ext 📖DFunLike.coe
InfHom
instFunLike
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
InfHom
instFunLike
ext
id_apply 📖mathematicalDFunLike.coe
InfHom
instFunLike
id
id_comp 📖mathematicalcomp
id
inf_apply 📖mathematicalDFunLike.coe
InfHom
SemilatticeInf.toMin
instFunLike
instMin
instInfHomClass 📖mathematicalInfHomClass
InfHom
instFunLike
map_inf'
map_inf' 📖mathematicaltoFun
mk_le_mk 📖mathematicalSemilatticeInf.toMinInfHom
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Pi.hasLe
SemilatticeInf.toPartialOrder
subtypeVal_apply 📖mathematicalSemilatticeInf.toMinDFunLike.coe
InfHom
Subtype.semilatticeInf
instFunLike
subtypeVal
subtypeVal_coe 📖mathematicalSemilatticeInf.toMinDFunLike.coe
InfHom
Subtype.semilatticeInf
instFunLike
subtypeVal
symm_dual_comp 📖mathematicalDFunLike.coe
Equiv
SupHom
OrderDual
OrderDual.instSup
InfHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
SupHom.comp
comp
symm_dual_id 📖mathematicalDFunLike.coe
Equiv
SupHom
OrderDual
OrderDual.instSup
InfHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
SupHom.id
id
toFun_eq_coe 📖mathematicaltoFun
DFunLike.coe
InfHom
instFunLike
top_apply 📖mathematicalDFunLike.coe
InfHom
SemilatticeInf.toMin
instFunLike
Top.top
instTop

InfHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_inf 📖mathematicalDFunLike.coe
toOrderHomClass 📖mathematicalOrderHomClass
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
inf_eq_left
map_inf

LatticeHom

Definitions

NameCategoryTheorems
comp 📖CompOp
26 mathmath: BddLat.hom_comp, comp_apply, coe_comp, Sublattice.subtype_comp_inclusion, Lat.hom_comp, withTopWithBot_comp, BoundedLatticeHom.coe_comp_lattice_hom', Sublattice.map_map, comp_id, cancel_left, id_comp, symm_dual_comp, withBot_comp, withTop_comp, coe_comp_inf_hom, coe_comp_sup_hom, dual_comp, coe_comp_inf_hom', coe_comp_sup_hom', Lat.ofHom_comp, DistLat.hom_comp, comp_assoc, BoundedLatticeHom.coe_comp_lattice_hom, cancel_right, DistLat.ofHom_comp, Sublattice.comap_comap
copy 📖CompOp
2 mathmath: copy_eq, coe_copy
dual 📖CompOp
8 mathmath: Lat.dual_map, DistLat.dual_map, dual_symm_apply_toFun, dual_apply_toFun, symm_dual_id, dual_id, symm_dual_comp, dual_comp
fst 📖CompOp
4 mathmath: fst_apply, Sublattice.le_prod_iff, coe_fst, Sublattice.prod_top
id 📖CompOp
17 mathmath: withTopWithBot_id, id_apply, Sublattice.comap_id, symm_dual_id, DistLat.hom_id, withBot_id, comp_id, id_comp, dual_id, Sublattice.inclusion_rfl, Lat.hom_id, DistLat.ofHom_id, withTop_id, BddLat.hom_id, Sublattice.map_id, coe_id, Lat.ofHom_id
instFunLike 📖CompOp
92 mathmath: toFun_eq_coe, DistLat.hom_inv_apply, BoundedLatticeHom.coe_toLatticeHom, withTopWithBot_apply, Lat.ext_iff, fst_apply, comp_apply, Sublattice.coe_map, coe_withTopWithBot, coe_comp, Lat.coe_id, subtypeVal_coe, subtypeVal_apply, id_apply, dual_symm_apply_toFun, Lat.forget_map, Sublattice.inclusion_apply, BiheytingHom.toFun_eq_coe_aux, bddLat_dual_comp_forget_to_lat, exists_birkhoff_representation, withTopWithBot'_toFun, Lat.comp_apply, CoheytingHom.toFun_eq_coe_aux, Sublattice.subtype_apply, DistLat.ext_iff, dual_apply_toFun, withTop_apply, Pi.coe_evalLatticeHom, distLat_dual_comp_forget_to_Lat, Sublattice.apply_coe_mem_map, DistLat.forget_map, Sublattice.coe_comap, withTop_toFun, Sublattice.mem_map, withBot_toFun, withTop'_toFun, DistLat.id_apply, FrameHom.coe_toLatticeHom, OrderHomClass.to_lattice_hom_apply, Sublattice.subtype_injective, ext_iff, Sublattice.mem_subtype, coe_withTop, coe_mk, Lat.ofHom_apply, coe_toSupHom, DistLat.ofHom_apply, withTopWithBot_toFun, coe_snd, HeytingHom.toFun_eq_coe_aux, Booleanisation.liftLatticeHom_injective, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, snd_apply, withBot'_toFun, coe_toInfHom, OrderHomClass.coe_to_lattice_hom, Sublattice.mem_map_of_mem, Lat_dual_comp_forget_to_partOrd, coe_comp_inf_hom, coe_comp_sup_hom, Sublattice.coe_inclusion, instLatticeHomClass, DistLat.coe_id, Lat.hom_inv_apply, BddLat.comp_apply, SimplexCategory.toCat_obj, birkhoffFinset_injective, Lat.id_apply, BddLat.id_apply, DistLat.coe_comp, coe_comp_inf_hom', coe_comp_sup_hom', Lat.inv_hom_apply, coe_withBot, bddDistLat_dual_comp_forget_to_distLat, DistLat.comp_apply, Function.locallyFinsuppWithin.restrictLatticeHom_apply, Sublattice.mem_comap, Sublattice.coe_subtype, BoundedLatticeHom.coe_mk, linOrd_dual_comp_forget_to_Lat, coe_id, coe_fst, SimplexCategory.toCat_map, DistLat.inv_hom_apply, Sublattice.inclusion_injective, CompleteSublattice.subtype_apply, Pi.evalLatticeHom_apply, withBot_apply, Lat.coe_comp
instInhabited 📖CompOp
snd 📖CompOp
4 mathmath: coe_snd, snd_apply, Sublattice.top_prod, Sublattice.le_prod_iff
subtypeVal 📖CompOp
2 mathmath: subtypeVal_coe, subtypeVal_apply
toInfHom 📖CompOp
1 mathmath: coe_toInfHom
toSupHom 📖CompOp
16 mathmath: toFun_eq_coe, BiheytingHom.map_sdiff', withBot_toFun, map_inf', BoundedLatticeHom.map_top', CoheytingHom.map_top', BiheytingHom.toFun_eq_coe, coe_toSupHom, HeytingHom.map_himp', CoheytingHom.map_sdiff', BoundedLatticeHom.map_bot', BoundedLatticeHom.toFun_eq_coe, BiheytingHom.map_himp', CoheytingHom.toFun_eq_coe, HeytingHom.map_bot', HeytingHom.toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
compext
comp_apply
cancel_right 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
compext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
comp
coe_comp_inf_hom 📖mathematicalSemilatticeInf.toMin
Lattice.toSemilatticeInf
DFunLike.coe
LatticeHom
instFunLike
comp
InfHomClass.map_inf
LatticeHomClass.toInfHomClass
instLatticeHomClass
InfHom.comp
InfHomClass.map_inf
LatticeHomClass.toInfHomClass
instLatticeHomClass
coe_comp_inf_hom' 📖mathematicalSemilatticeInf.toMin
Lattice.toSemilatticeInf
DFunLike.coe
LatticeHom
instFunLike
InfHomClass.map_inf
LatticeHomClass.toInfHomClass
instLatticeHomClass
comp
InfHom.comp
InfHomClass.map_inf
LatticeHomClass.toInfHomClass
instLatticeHomClass
coe_comp_sup_hom 📖mathematicalSemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
LatticeHom
instFunLike
comp
SupHomClass.map_sup
LatticeHomClass.toSupHomClass
instLatticeHomClass
SupHom.comp
SupHomClass.map_sup
LatticeHomClass.toSupHomClass
instLatticeHomClass
coe_comp_sup_hom' 📖mathematicalSemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
LatticeHom
instFunLike
SupHomClass.map_sup
LatticeHomClass.toSupHomClass
instLatticeHomClass
comp
SupHom.comp
SupHomClass.map_sup
LatticeHomClass.toSupHomClass
instLatticeHomClass
coe_copy 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
copy
coe_fst 📖mathematicalDFunLike.coe
LatticeHom
Prod.instLattice
instFunLike
fst
coe_id 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
id
coe_mk 📖mathematicalSupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DFunLike.coe
LatticeHom
instFunLike
SupHom
SupHom.instFunLike
coe_snd 📖mathematicalDFunLike.coe
LatticeHom
Prod.instLattice
instFunLike
snd
coe_toInfHom 📖mathematicalDFunLike.coe
InfHom
SemilatticeInf.toMin
Lattice.toSemilatticeInf
InfHom.instFunLike
toInfHom
LatticeHom
instFunLike
coe_toSupHom 📖mathematicalDFunLike.coe
SupHom
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SupHom.instFunLike
toSupHom
LatticeHom
instFunLike
comp_apply 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
comp
comp_assoc 📖mathematicalcomp
comp_id 📖mathematicalcomp
id
ext
copy_eq 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
copyDFunLike.ext'
dual_apply_toFun 📖mathematicalDFunLike.coe
LatticeHom
OrderDual
OrderDual.instLattice
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
dual
dual_comp 📖mathematicalDFunLike.coe
Equiv
LatticeHom
OrderDual
OrderDual.instLattice
EquivLike.toFunLike
Equiv.instEquivLike
dual
comp
dual_id 📖mathematicalDFunLike.coe
Equiv
LatticeHom
OrderDual
OrderDual.instLattice
EquivLike.toFunLike
Equiv.instEquivLike
dual
id
dual_symm_apply_toFun 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
Equiv
OrderDual
OrderDual.instLattice
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
ext 📖DFunLike.coe
LatticeHom
instFunLike
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
ext
fst_apply 📖mathematicalDFunLike.coe
LatticeHom
Prod.instLattice
instFunLike
fst
id_apply 📖mathematicalDFunLike.coe
LatticeHom
instFunLike
id
id_comp 📖mathematicalcomp
id
ext
instLatticeHomClass 📖mathematicalLatticeHomClass
LatticeHom
instFunLike
SupHom.map_sup'
map_inf'
map_inf' 📖mathematicalSupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
toSupHom
SemilatticeInf.toMin
Lattice.toSemilatticeInf
snd_apply 📖mathematicalDFunLike.coe
LatticeHom
Prod.instLattice
instFunLike
snd
subtypeVal_apply 📖mathematicalSemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DFunLike.coe
LatticeHom
Subtype.lattice
instFunLike
subtypeVal
subtypeVal_coe 📖mathematicalSemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DFunLike.coe
LatticeHom
Subtype.lattice
instFunLike
subtypeVal
symm_dual_comp 📖mathematicalDFunLike.coe
Equiv
LatticeHom
OrderDual
OrderDual.instLattice
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
comp
symm_dual_id 📖mathematicalDFunLike.coe
Equiv
LatticeHom
OrderDual
OrderDual.instLattice
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
id
toFun_eq_coe 📖mathematicalSupHom.toFun
SemilatticeSup.toMax
Lattice.toSemilatticeSup
toSupHom
DFunLike.coe
LatticeHom
instFunLike

LatticeHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_inf 📖mathematicalDFunLike.coe
SemilatticeInf.toMin
Lattice.toSemilatticeInf
toInfHomClass 📖mathematicalInfHomClass
SemilatticeInf.toMin
Lattice.toSemilatticeInf
map_inf
toSupHomClass 📖mathematicalSupHomClass
SemilatticeSup.toMax
Lattice.toSemilatticeSup

OrderHomClass

Definitions

NameCategoryTheorems
toLatticeHom 📖CompOp
2 mathmath: to_lattice_hom_apply, coe_to_lattice_hom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_to_lattice_hom 📖mathematicalDFunLike.coe
LatticeHom
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LatticeHom.instFunLike
toLatticeHom
toLatticeHomClass 📖mathematicalLatticeHomClass
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
le_total
sup_eq_right
mono
sup_eq_left
inf_eq_left
inf_eq_right
to_lattice_hom_apply 📖mathematicalDFunLike.coe
LatticeHom
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LatticeHom.instFunLike
toLatticeHom

OrderIsoClass

Theorems

NameKindAssumesProvesValidatesDepends On
toInfHomClass 📖mathematicalInfHomClass
SemilatticeInf.toMin
EquivLike.toFunLike
toOrderHomClass
eq_of_forall_le_iff
toLatticeHomClass 📖mathematicalLatticeHomClass
EquivLike.toFunLike
toSupHomClass
toInfHomClass
InfHomClass.map_inf
toSupHomClass 📖mathematicalSupHomClass
SemilatticeSup.toMax
EquivLike.toFunLike
toOrderHomClass
eq_of_forall_ge_iff

Pi

Definitions

NameCategoryTheorems
evalLatticeHom 📖CompOp
3 mathmath: coe_evalLatticeHom, Sublattice.le_pi, evalLatticeHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_evalLatticeHom 📖mathematicalDFunLike.coe
LatticeHom
instLattice
LatticeHom.instFunLike
evalLatticeHom
Function.eval
evalLatticeHom_apply 📖mathematicalDFunLike.coe
LatticeHom
instLattice
LatticeHom.instFunLike
evalLatticeHom

SupHom

Definitions

NameCategoryTheorems
comp 📖CompOp
18 mathmath: InfHom.symm_dual_comp, BoundedLatticeHom.coe_comp_sup_hom', symm_dual_comp, BoundedLatticeHom.coe_comp_lattice_hom', id_comp, dual_comp, BoundedLatticeHom.coe_comp_sup_hom, InfHom.dual_comp, coe_comp, cancel_left, cancel_right, withBot_comp, LatticeHom.coe_comp_sup_hom, comp_id, comp_apply, LatticeHom.coe_comp_sup_hom', comp_assoc, withTop_comp
const 📖CompOp
2 mathmath: coe_const, const_apply
copy 📖CompOp
2 mathmath: coe_copy, copy_eq
dual 📖CompOp
6 mathmath: dual_id, symm_dual_comp, dual_comp, symm_dual_id, dual_symm_apply_toFun, dual_apply_toFun
id 📖CompOp
10 mathmath: dual_id, withBot_id, id_apply, InfHom.dual_id, id_comp, symm_dual_id, comp_id, InfHom.symm_dual_id, withTop_id, coe_id
instBot 📖CompOp
2 mathmath: bot_apply, coe_bot
instBoundedOrder 📖CompOp
instFunLike 📖CompOp
32 mathmath: subtypeVal_coe, bot_apply, instSupHomClass, coe_bot, id_apply, InfHom.dual_apply_toFun, InfHom.dual_symm_apply_toFun, coe_top, UpperSet.coe_iciSupHom, coe_comp, coe_const, withTop'_toFun, withTop_toFun, LatticeHom.coe_mk, subtypeVal_apply, LatticeHom.coe_toSupHom, SupBotHom.coe_toSupHom, const_apply, withBot_toFun, UpperSet.iciSupHom_apply, withBot'_toFun, sup_apply, coe_sup, comp_apply, coe_mk, toFun_eq_coe, ext_iff, dual_symm_apply_toFun, coe_id, top_apply, SupBotHom.coe_mk, dual_apply_toFun
instInhabited 📖CompOp
instMax 📖CompOp
2 mathmath: sup_apply, coe_sup
instOrderBot 📖CompOp
instOrderTop 📖CompOp
instPartialOrder 📖CompOp
1 mathmath: mk_le_mk
instSemilatticeSup 📖CompOp
instTop 📖CompOp
2 mathmath: coe_top, top_apply
subtypeVal 📖CompOp
2 mathmath: subtypeVal_coe, subtypeVal_apply
toFun 📖CompOp
18 mathmath: LatticeHom.toFun_eq_coe, BiheytingHom.map_sdiff', LatticeHom.map_inf', BoundedLatticeHom.map_top', CoheytingHom.map_top', BiheytingHom.toFun_eq_coe, HeytingHom.map_himp', CoheytingHom.map_sdiff', BoundedLatticeHom.map_bot', BoundedLatticeHom.toFun_eq_coe, SupBotHom.map_bot', SupBotHom.toFun_eq_coe, BiheytingHom.map_himp', map_sup', CoheytingHom.toFun_eq_coe, HeytingHom.map_bot', toFun_eq_coe, HeytingHom.toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
bot_apply 📖mathematicalDFunLike.coe
SupHom
SemilatticeSup.toMax
instFunLike
Bot.bot
instBot
cancel_left 📖mathematicalDFunLike.coe
SupHom
instFunLike
compext
comp_apply
cancel_right 📖mathematicalDFunLike.coe
SupHom
instFunLike
compext
Function.Surjective.forall
DFunLike.ext_iff
coe_bot 📖mathematicalDFunLike.coe
SupHom
SemilatticeSup.toMax
instFunLike
Bot.bot
instBot
Pi.instBotForall
coe_comp 📖mathematicalDFunLike.coe
SupHom
instFunLike
comp
coe_const 📖mathematicalDFunLike.coe
SupHom
SemilatticeSup.toMax
instFunLike
const
coe_copy 📖mathematicalDFunLike.coe
SupHom
instFunLike
copy
coe_id 📖mathematicalDFunLike.coe
SupHom
instFunLike
id
coe_mk 📖mathematicalDFunLike.coe
SupHom
instFunLike
coe_sup 📖mathematicalDFunLike.coe
SupHom
SemilatticeSup.toMax
instFunLike
instMax
Pi.instMaxForall_mathlib
coe_top 📖mathematicalDFunLike.coe
SupHom
SemilatticeSup.toMax
instFunLike
Top.top
instTop
Pi.instTopForall
comp_apply 📖mathematicalDFunLike.coe
SupHom
instFunLike
comp
comp_assoc 📖mathematicalcomp
comp_id 📖mathematicalcomp
id
const_apply 📖mathematicalDFunLike.coe
SupHom
SemilatticeSup.toMax
instFunLike
const
copy_eq 📖mathematicalDFunLike.coe
SupHom
instFunLike
copyDFunLike.ext'
dual_apply_toFun 📖mathematicalDFunLike.coe
InfHom
OrderDual
OrderDual.instInf
InfHom.instFunLike
Equiv
SupHom
EquivLike.toFunLike
Equiv.instEquivLike
dual
instFunLike
dual_comp 📖mathematicalDFunLike.coe
Equiv
SupHom
InfHom
OrderDual
OrderDual.instInf
EquivLike.toFunLike
Equiv.instEquivLike
dual
comp
InfHom.comp
dual_id 📖mathematicalDFunLike.coe
Equiv
SupHom
InfHom
OrderDual
OrderDual.instInf
EquivLike.toFunLike
Equiv.instEquivLike
dual
id
InfHom.id
dual_symm_apply_toFun 📖mathematicalDFunLike.coe
SupHom
instFunLike
Equiv
InfHom
OrderDual
OrderDual.instInf
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
InfHom.instFunLike
ext 📖DFunLike.coe
SupHom
instFunLike
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
SupHom
instFunLike
ext
id_apply 📖mathematicalDFunLike.coe
SupHom
instFunLike
id
id_comp 📖mathematicalcomp
id
instSupHomClass 📖mathematicalSupHomClass
SupHom
instFunLike
map_sup'
map_sup' 📖mathematicaltoFun
mk_le_mk 📖mathematicalSemilatticeSup.toMaxSupHom
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Pi.hasLe
SemilatticeSup.toPartialOrder
subtypeVal_apply 📖mathematicalSemilatticeSup.toMaxDFunLike.coe
SupHom
Subtype.semilatticeSup
instFunLike
subtypeVal
subtypeVal_coe 📖mathematicalSemilatticeSup.toMaxDFunLike.coe
SupHom
Subtype.semilatticeSup
instFunLike
subtypeVal
sup_apply 📖mathematicalDFunLike.coe
SupHom
SemilatticeSup.toMax
instFunLike
instMax
symm_dual_comp 📖mathematicalDFunLike.coe
Equiv
InfHom
OrderDual
OrderDual.instInf
SupHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
InfHom.comp
comp
symm_dual_id 📖mathematicalDFunLike.coe
Equiv
InfHom
OrderDual
OrderDual.instInf
SupHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
dual
InfHom.id
id
toFun_eq_coe 📖mathematicaltoFun
DFunLike.coe
SupHom
instFunLike
top_apply 📖mathematicalDFunLike.coe
SupHom
SemilatticeSup.toMax
instFunLike
Top.top
instTop

SupHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_sup 📖mathematicalDFunLike.coe
toOrderHomClass 📖mathematicalOrderHomClass
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
sup_eq_right
map_sup

(root)

Definitions

NameCategoryTheorems
InfHom 📖CompData
43 mathmath: InfHom.top_apply, Nucleus.coe_toInfHom, InfHom.comp_apply, InfHom.bot_apply, InfHom.symm_dual_comp, InfTopHom.coe_toInfHom, SupHom.dual_id, Nucleus.coe_mk, SupHom.symm_dual_comp, InfHom.coe_comp, InfHom.dual_apply_toFun, InfHom.dual_id, InfHom.instInfHomClass, InfHom.id_apply, InfHom.dual_symm_apply_toFun, InfHom.const_apply, SupHom.dual_comp, InfHom.dual_comp, InfHom.withBot_toFun, SupHom.symm_dual_id, InfHom.withTop_toFun, InfHom.coe_mk, InfHom.withTop'_toFun, LowerSet.iicInfHom_apply, InfHom.inf_apply, InfHom.ext_iff, InfHom.withBot'_toFun, InfHom.coe_const, InfTopHom.coe_mk, LatticeHom.coe_toInfHom, LowerSet.coe_iicInfHom, InfHom.symm_dual_id, InfHom.coe_id, Nucleus.mk_le_mk, InfHom.subtypeVal_coe, InfHom.coe_bot, InfHom.coe_inf, SupHom.dual_symm_apply_toFun, InfHom.mk_le_mk, InfHom.toFun_eq_coe, InfHom.coe_top, SupHom.dual_apply_toFun, InfHom.subtypeVal_apply
InfHomClass 📖CompData
5 mathmath: OrderIsoClass.toInfHomClass, InfTopHomClass.toInfHomClass, InfHom.instInfHomClass, NucleusClass.toInfHomClass, LatticeHomClass.toInfHomClass
LatticeHom 📖CompData
98 mathmath: LatticeHom.toFun_eq_coe, DistLat.hom_inv_apply, BoundedLatticeHom.coe_toLatticeHom, LatticeHom.withTopWithBot_apply, Lat.ext_iff, LatticeHom.fst_apply, LatticeHom.comp_apply, Sublattice.coe_map, LatticeHom.coe_withTopWithBot, Lat.dual_map, LatticeHom.coe_comp, DistLat.dual_map, Lat.coe_id, LatticeHom.subtypeVal_coe, LatticeHom.subtypeVal_apply, LatticeHom.id_apply, LatticeHom.dual_symm_apply_toFun, Lat.forget_map, Sublattice.inclusion_apply, BiheytingHom.toFun_eq_coe_aux, bddLat_dual_comp_forget_to_lat, exists_birkhoff_representation, LatticeHom.withTopWithBot'_toFun, Lat.comp_apply, CoheytingHom.toFun_eq_coe_aux, Sublattice.subtype_apply, DistLat.ext_iff, LatticeHom.dual_apply_toFun, LatticeHom.withTop_apply, LatticeHom.symm_dual_id, Pi.coe_evalLatticeHom, distLat_dual_comp_forget_to_Lat, Sublattice.apply_coe_mem_map, DistLat.forget_map, Sublattice.coe_comap, LatticeHom.withTop_toFun, Sublattice.mem_map, LatticeHom.withBot_toFun, LatticeHom.withTop'_toFun, DistLat.id_apply, FrameHom.coe_toLatticeHom, OrderHomClass.to_lattice_hom_apply, Sublattice.subtype_injective, LatticeHom.ext_iff, Sublattice.mem_subtype, LatticeHom.coe_withTop, LatticeHom.dual_id, LatticeHom.coe_mk, Lat.ofHom_apply, LatticeHom.coe_toSupHom, DistLat.ofHom_apply, LatticeHom.withTopWithBot_toFun, LatticeHom.symm_dual_comp, LatticeHom.coe_snd, HeytingHom.toFun_eq_coe_aux, Booleanisation.liftLatticeHom_injective, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, LatticeHom.snd_apply, LatticeHom.withBot'_toFun, LatticeHom.coe_toInfHom, OrderHomClass.coe_to_lattice_hom, Sublattice.mem_map_of_mem, Lat_dual_comp_forget_to_partOrd, LatticeHom.coe_comp_inf_hom, LatticeHom.coe_comp_sup_hom, LatticeHom.dual_comp, Sublattice.coe_inclusion, LatticeHom.instLatticeHomClass, DistLat.coe_id, Lat.hom_inv_apply, BddLat.comp_apply, SimplexCategory.toCat_obj, LatticeHom.birkhoffFinset_injective, Lat.id_apply, BddLat.id_apply, DistLat.coe_comp, LatticeHom.coe_comp_inf_hom', LatticeHom.coe_comp_sup_hom', Lat.inv_hom_apply, LatticeHom.coe_withBot, bddDistLat_dual_comp_forget_to_distLat, DistLat.comp_apply, Function.locallyFinsuppWithin.restrictLatticeHom_apply, Sublattice.mem_comap, Sublattice.coe_subtype, BoundedLatticeHom.coe_mk, linOrd_dual_comp_forget_to_Lat, LatticeHom.coe_id, LatticeHom.coe_fst, SimplexCategory.toCat_map, DistLat.inv_hom_apply, Sublattice.inclusion_injective, CompleteSublattice.subtype_apply, Pi.evalLatticeHom_apply, LatticeHom.withBot_apply, Lat.coe_comp
LatticeHomClass 📖CompData
7 mathmath: CoheytingHomClass.toLatticeHomClass, BiheytingHomClass.toLatticeHomClass, OrderIsoClass.toLatticeHomClass, OrderHomClass.toLatticeHomClass, BoundedLatticeHomClass.toLatticeHomClass, HeytingHomClass.toLatticeHomClass, LatticeHom.instLatticeHomClass
SupHom 📖CompData
41 mathmath: SupHom.subtypeVal_coe, SupHom.bot_apply, InfHom.symm_dual_comp, SupHom.dual_id, SupHom.instSupHomClass, SupHom.coe_bot, SupHom.id_apply, SupHom.symm_dual_comp, InfHom.dual_apply_toFun, InfHom.dual_id, InfHom.dual_symm_apply_toFun, SupHom.coe_top, SupHom.dual_comp, UpperSet.coe_iciSupHom, InfHom.dual_comp, SupHom.coe_comp, SupHom.coe_const, SupHom.withTop'_toFun, SupHom.withTop_toFun, SupHom.symm_dual_id, LatticeHom.coe_mk, SupHom.subtypeVal_apply, LatticeHom.coe_toSupHom, SupBotHom.coe_toSupHom, SupHom.const_apply, SupHom.withBot_toFun, UpperSet.iciSupHom_apply, SupHom.withBot'_toFun, SupHom.sup_apply, SupHom.coe_sup, SupHom.comp_apply, SupHom.coe_mk, InfHom.symm_dual_id, SupHom.toFun_eq_coe, SupHom.ext_iff, SupHom.dual_symm_apply_toFun, SupHom.coe_id, SupHom.mk_le_mk, SupHom.top_apply, SupBotHom.coe_mk, SupHom.dual_apply_toFun
SupHomClass 📖CompData
4 mathmath: OrderIsoClass.toSupHomClass, SupHom.instSupHomClass, SupBotHomClass.toSupHomClass, LatticeHomClass.toSupHomClass
instCoeTCInfHomOfInfHomClass 📖CompOp
instCoeTCLatticeHomOfLatticeHomClass 📖CompOp
instCoeTCSupHomOfSupHomClass 📖CompOp
orderEmbeddingOfInjective 📖CompOp
2 mathmath: orderEmbeddingOfInjective_apply, CompleteLatticeHom.toOrderIsoRangeOfInjective_apply

Theorems

NameKindAssumesProvesValidatesDepends On
orderEmbeddingOfInjective_apply 📖mathematicalDFunLike.coeRelEmbedding
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
RelEmbedding.instFunLike
orderEmbeddingOfInjective

---

← Back to Index