Documentation Verification Report

Ideal

πŸ“ Source: Mathlib/Order/Ideal.lean

Statistics

MetricCount
Definitionsabove, carrier, instInhabited, instMembership, Ideal, IsMaximal, IsProper, instCompleteLattice, instInfSet, instInhabited, instLattice, instMax, instMin, instOrderBot, instOrderTop, instPartialOrder, instPartialOrderIdeal, instSetLike, principal, toLowerSet, IsIdeal, toIdeal, idealOfCofinals, sequenceOfCofinals
24
TheoremsisMaximal, isProper, above_mem, isCofinal, le_above, isCoatom, isCoatom', maximal_proper, toIsProper, ne_top, ne_univ, notMem_of_compl_mem, notMem_or_compl_notMem, top_notMem, bot_mem, carrier_eq_coe, coe_inf, coe_sInf, coe_ssubset_coe, coe_subset_coe, coe_sup, coe_sup_eq, coe_toLowerSet, coe_top, directed, directed', eq_sup_of_le_sup, ext, ext_iff, finsetSup_mem_iff, inter_nonempty, isIdeal, isMaximal_iff, isMaximal_iff_isCoatom, isProper_iff, isProper_iff_ne_top, isProper_of_ne_top, isProper_of_notMem, lower, lt_sup_principal_of_notMem, mem_compl_of_ge, mem_inf, mem_of_mem_of_le, mem_principal, mem_principal_self, mem_sInf, mem_sup, nonempty, nonempty', principal_bot, principal_le_iff, principal_toLowerSet, principal_top, sup_mem, sup_mem_iff, toLowerSet_injective, top_of_top_mem, top_toLowerSet, IsLowerSet, cofinal_meets_idealOfCofinals, isIdeal_iff, isIdeal_sUnion_of_directedOn, isIdeal_sUnion_of_isChain, mem_idealOfCofinals, encode_mem, monotone
66
Total90

IsCoatom

Theorems

NameKindAssumesProvesValidatesDepends On
isMaximal πŸ“–mathematicalIsCoatom
Order.Ideal
PartialOrder.toPreorder
Order.Ideal.instPartialOrderIdeal
Order.Ideal.instOrderTop
Order.Ideal.IsMaximalβ€”isProper
isProper πŸ“–mathematicalIsCoatom
Order.Ideal
PartialOrder.toPreorder
Order.Ideal.instPartialOrderIdeal
Order.Ideal.instOrderTop
Order.Ideal.IsProperβ€”Order.Ideal.isProper_of_ne_top

Order

Definitions

NameCategoryTheorems
Ideal πŸ“–CompData
49 mathmath: Ideal.PrimePair.I_union_F, Ideal.ext_iff, mem_idealOfCofinals, Ideal.lower, Ideal.isPrime_iff, Ideal.IsProper.notMem_or_compl_notMem, Ideal.coe_sup, Ideal.principal_bot, Ideal.toLowerSet_injective, Ideal.coe_sup_eq, Ideal.IsProper.top_notMem, Ideal.isMaximal_iff_isCoatom, Ideal.IsPrime.compl_filter, Ideal.PrimePair.isCompl_I_F, Ideal.PrimePair.compl_I_eq_F, Ideal.directed, Ideal.isPrime_iff_mem_or_compl_mem, Ideal.mem_principal_self, Ideal.mem_principal, Ideal.top_toLowerSet, Ideal.IsMaximal.isCoatom', Ideal.carrier_eq_coe, Ideal.principal_le_iff, PFilter.mem_mk, Ideal.inter_nonempty, Ideal.nonempty, cofinal_meets_idealOfCofinals, Ideal.coe_subset_coe, Ideal.bot_mem, Ideal.PrimePair.F_union_I, Ideal.mem_sup, Ideal.isMaximal_iff, Ideal.mem_sInf, Ideal.coe_inf, Ideal.sup_mem_iff, Ideal.finsetSup_mem_iff, Ideal.coe_top, Ideal.isIdeal, Ideal.mem_inf, Ideal.PrimePair.disjoint, Ideal.coe_ssubset_coe, Ideal.coe_toLowerSet, Ideal.IsMaximal.isCoatom, Ideal.PrimePair.compl_F_eq_I, Ideal.coe_sInf, DistribLattice.mem_ideal_sup_principal, Ideal.isPrime_iff_mem_or_mem, Ideal.IsPrime.mem_or_compl_mem, Ideal.principal_top
IsIdeal πŸ“–CompData
4 mathmath: PFilter.IsPrime.compl_ideal, PFilter.isPrime_iff, isIdeal_iff, Ideal.isIdeal
idealOfCofinals πŸ“–CompOp
2 mathmath: mem_idealOfCofinals, cofinal_meets_idealOfCofinals
sequenceOfCofinals πŸ“–CompOp
2 mathmath: sequenceOfCofinals.monotone, sequenceOfCofinals.encode_mem

Theorems

NameKindAssumesProvesValidatesDepends On
cofinal_meets_idealOfCofinals πŸ“–mathematicalβ€”Cofinal
Cofinal.instMembership
Ideal
Preorder.toLE
SetLike.instMembership
Ideal.instSetLike
idealOfCofinals
β€”sequenceOfCofinals.encode_mem
le_rfl
isIdeal_iff πŸ“–mathematicalβ€”IsIdeal
IsLowerSet
Set.Nonempty
DirectedOn
β€”β€”
isIdeal_sUnion_of_directedOn πŸ“–mathematicalIsIdeal
Preorder.toLE
DirectedOn
Set
Set.instHasSubset
Set.Nonempty
Set.sUnionβ€”isLowerSet_sUnion
IsIdeal.IsLowerSet
Set.nonempty_sUnion
IsIdeal.Nonempty
Set.directedOn_sUnion
IsIdeal.Directed
isIdeal_sUnion_of_isChain πŸ“–mathematicalIsIdeal
Preorder.toLE
IsChain
Set
Set.instHasSubset
Set.Nonempty
Set.sUnionβ€”isIdeal_sUnion_of_directedOn
IsChain.directedOn
Set.instReflSubset
mem_idealOfCofinals πŸ“–mathematicalβ€”Ideal
Preorder.toLE
SetLike.instMembership
Ideal.instSetLike
idealOfCofinals
β€”le_rfl

Order.Cofinal

Definitions

NameCategoryTheorems
above πŸ“–CompOp
2 mathmath: above_mem, le_above
carrier πŸ“–CompOp
1 mathmath: isCofinal
instInhabited πŸ“–CompOpβ€”
instMembership πŸ“–CompOp
3 mathmath: above_mem, Order.cofinal_meets_idealOfCofinals, Order.sequenceOfCofinals.encode_mem

Theorems

NameKindAssumesProvesValidatesDepends On
above_mem πŸ“–mathematicalβ€”Order.Cofinal
instMembership
above
β€”isCofinal
isCofinal πŸ“–mathematicalβ€”IsCofinal
Preorder.toLE
carrier
β€”β€”
le_above πŸ“–mathematicalβ€”Preorder.toLE
above
β€”isCofinal

Order.Ideal

Definitions

NameCategoryTheorems
IsMaximal πŸ“–CompData
4 mathmath: isMaximal_iff_isCoatom, IsCoatom.isMaximal, isMaximal_iff, IsPrime.isMaximal
IsProper πŸ“–CompData
10 mathmath: IsMaximal.toIsProper, IsCoatom.isProper, IsPrime.toIsProper, isPrime_iff, isProper_iff, isProper_iff_ne_top, isProper_of_ne_top, PrimePair.I_isProper, isMaximal_iff, isProper_of_notMem
instCompleteLattice πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
2 mathmath: mem_sInf, coe_sInf
instInhabited πŸ“–CompOpβ€”
instLattice πŸ“–CompOpβ€”
instMax πŸ“–CompOp
5 mathmath: coe_sup, lt_sup_principal_of_notMem, coe_sup_eq, mem_sup, DistribLattice.mem_ideal_sup_principal
instMin πŸ“–CompOp
2 mathmath: coe_inf, mem_inf
instOrderBot πŸ“–CompOp
1 mathmath: principal_bot
instOrderTop πŸ“–CompOp
7 mathmath: isMaximal_iff_isCoatom, top_toLowerSet, IsMaximal.isCoatom', top_of_top_mem, coe_top, IsMaximal.isCoatom, principal_top
instPartialOrder πŸ“–CompOpβ€”
instPartialOrderIdeal πŸ“–CompOp
13 mathmath: principal_bot, lt_sup_principal_of_notMem, isMaximal_iff_isCoatom, DistribLattice.prime_ideal_of_disjoint_filter_ideal, top_toLowerSet, IsMaximal.isCoatom', principal_le_iff, coe_subset_coe, top_of_top_mem, coe_top, coe_ssubset_coe, IsMaximal.isCoatom, principal_top
instSetLike πŸ“–CompOp
43 mathmath: PrimePair.I_union_F, ext_iff, Order.mem_idealOfCofinals, lower, isPrime_iff, IsProper.notMem_or_compl_notMem, coe_sup, coe_sup_eq, IsProper.top_notMem, IsPrime.compl_filter, PrimePair.isCompl_I_F, IsMaximal.maximal_proper, PrimePair.compl_I_eq_F, directed, isPrime_iff_mem_or_compl_mem, mem_principal_self, mem_principal, carrier_eq_coe, principal_le_iff, Order.PFilter.mem_mk, inter_nonempty, nonempty, Order.cofinal_meets_idealOfCofinals, coe_subset_coe, bot_mem, PrimePair.F_union_I, mem_sup, isMaximal_iff, mem_sInf, coe_inf, sup_mem_iff, finsetSup_mem_iff, coe_top, isIdeal, mem_inf, PrimePair.disjoint, coe_ssubset_coe, coe_toLowerSet, PrimePair.compl_F_eq_I, coe_sInf, DistribLattice.mem_ideal_sup_principal, isPrime_iff_mem_or_mem, IsPrime.mem_or_compl_mem
principal πŸ“–CompOp
8 mathmath: principal_bot, principal_toLowerSet, lt_sup_principal_of_notMem, mem_principal_self, mem_principal, principal_le_iff, DistribLattice.mem_ideal_sup_principal, principal_top
toLowerSet πŸ“–CompOp
7 mathmath: directed', toLowerSet_injective, principal_toLowerSet, nonempty', top_toLowerSet, carrier_eq_coe, coe_toLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
bot_mem πŸ“–mathematicalβ€”Order.Ideal
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
β€”lower
nonempty'
bot_le
Set.Nonempty.some_mem
carrier_eq_coe πŸ“–mathematicalβ€”LowerSet.carrier
toLowerSet
SetLike.coe
Order.Ideal
instSetLike
β€”β€”
coe_inf πŸ“–mathematicalβ€”SetLike.coe
Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”LowerSet.coe_iInfβ‚‚
coe_ssubset_coe πŸ“–mathematicalβ€”Set
Set.instHasSSubset
SetLike.coe
Order.Ideal
instSetLike
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderIdeal
β€”β€”
coe_subset_coe πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Order.Ideal
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderIdeal
β€”β€”
coe_sup πŸ“–mathematicalβ€”SetLike.coe
Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instSetLike
instMax
setOf
SetLike.instMembership
SemilatticeSup.toMax
β€”β€”
coe_sup_eq πŸ“–mathematicalβ€”SetLike.coe
Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instSetLike
instMax
Lattice.toSemilatticeSup
SemilatticeInf.instIsCodirectedOrder
setOf
SetLike.instMembership
SemilatticeSup.toMax
β€”Set.ext
SemilatticeInf.instIsCodirectedOrder
eq_sup_of_le_sup
le_of_eq
coe_toLowerSet πŸ“–mathematicalβ€”SetLike.coe
LowerSet
LowerSet.instSetLike
toLowerSet
Order.Ideal
instSetLike
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
Order.Ideal
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderIdeal
instOrderTop
Set.univ
β€”β€”
directed πŸ“–mathematicalβ€”DirectedOn
SetLike.coe
Order.Ideal
instSetLike
β€”directed'
directed' πŸ“–mathematicalβ€”DirectedOn
LowerSet.carrier
toLowerSet
β€”β€”
eq_sup_of_le_sup πŸ“–β€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”β€”lower
inf_le_right
left_eq_inf
inf_sup_left
ext πŸ“–β€”SetLike.coe
Order.Ideal
instSetLike
β€”β€”SetLike.ext'
ext_iff πŸ“–mathematicalβ€”SetLike.coe
Order.Ideal
instSetLike
β€”ext
finsetSup_mem_iff πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
instSetLike
Finset.sup
β€”Finset.induction_on
Finset.sup_empty
instIsEmptyFalse
Finset.sup_insert
inter_nonempty πŸ“–mathematicalβ€”Set.Nonempty
Set
Set.instInter
SetLike.coe
Order.Ideal
instSetLike
β€”nonempty
exists_le_le
lower
isIdeal πŸ“–mathematicalβ€”Order.IsIdeal
SetLike.coe
Order.Ideal
instSetLike
β€”lower
nonempty
directed
isMaximal_iff πŸ“–mathematicalβ€”IsMaximal
IsProper
SetLike.coe
Order.Ideal
instSetLike
Set.univ
β€”β€”
isMaximal_iff_isCoatom πŸ“–mathematicalβ€”IsMaximal
IsCoatom
Order.Ideal
PartialOrder.toPreorder
instPartialOrderIdeal
instOrderTop
β€”IsMaximal.isCoatom
IsCoatom.isMaximal
isProper_iff πŸ“–mathematicalβ€”IsProperβ€”β€”
isProper_iff_ne_top πŸ“–mathematicalβ€”IsProperβ€”IsProper.ne_top
isProper_of_ne_top
isProper_of_ne_top πŸ“–mathematicalβ€”IsProperβ€”ext
isProper_of_notMem πŸ“–mathematicalOrder.Ideal
SetLike.instMembership
instSetLike
IsProperβ€”Set.mem_univ
lower πŸ“–mathematicalβ€”IsLowerSet
SetLike.coe
Order.Ideal
instSetLike
β€”LowerSet.lower'
lt_sup_principal_of_notMem πŸ“–mathematicalOrder.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
instSetLike
Preorder.toLT
instPartialOrderIdeal
instMax
principal
β€”LE.le.lt_of_ne
le_sup_left
mem_compl_of_ge πŸ“–β€”Set
Set.instMembership
Compl.compl
Set.instCompl
SetLike.coe
Order.Ideal
instSetLike
β€”β€”lower
mem_inf πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
instSetLike
instMin
β€”β€”
mem_of_mem_of_le πŸ“–β€”Order.Ideal
SetLike.instMembership
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderIdeal
β€”β€”Set.mem_of_mem_of_subset
mem_principal πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
SetLike.instMembership
instSetLike
principal
β€”β€”
mem_principal_self πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
SetLike.instMembership
instSetLike
principal
β€”mem_principal
le_refl
mem_sInf πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”coe_sInf
mem_sup πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
instSetLike
instMax
SemilatticeSup.toMax
β€”β€”
nonempty πŸ“–mathematicalβ€”Set.Nonempty
SetLike.coe
Order.Ideal
instSetLike
β€”nonempty'
nonempty' πŸ“–mathematicalβ€”Set.Nonempty
LowerSet.carrier
toLowerSet
β€”β€”
principal_bot πŸ“–mathematicalβ€”principal
Bot.bot
OrderBot.toBot
Preorder.toLE
Order.Ideal
PartialOrder.toPreorder
instPartialOrderIdeal
instOrderBot
β€”β€”
principal_le_iff πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderIdeal
principal
SetLike.instMembership
instSetLike
β€”le_rfl
lower
principal_toLowerSet πŸ“–mathematicalβ€”toLowerSet
Preorder.toLE
principal
LowerSet.Iic
β€”β€”
principal_top πŸ“–mathematicalβ€”principal
Top.top
OrderTop.toTop
Preorder.toLE
Order.Ideal
PartialOrder.toPreorder
instPartialOrderIdeal
instOrderTop
OrderTop.instIsDirectedOrder
top_nonempty
β€”toLowerSet_injective
OrderTop.instIsDirectedOrder
top_nonempty
LowerSet.Iic_top
sup_mem πŸ“–mathematicalOrder.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
instSetLike
SemilatticeSup.toMaxβ€”directed
lower
sup_le
sup_mem_iff πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
β€”lower
le_sup_left
le_sup_right
sup_mem
toLowerSet_injective πŸ“–mathematicalβ€”Order.Ideal
LowerSet
toLowerSet
β€”β€”
top_of_top_mem πŸ“–mathematicalOrder.Ideal
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderIdeal
instOrderTop
OrderTop.instIsDirectedOrder
top_nonempty
β€”ext
OrderTop.instIsDirectedOrder
top_nonempty
Set.ext
lower
le_top
top_toLowerSet πŸ“–mathematicalβ€”toLowerSet
Top.top
Order.Ideal
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderIdeal
instOrderTop
LowerSet
LowerSet.instTop
β€”β€”

Order.Ideal.IsMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
isCoatom πŸ“–mathematicalβ€”IsCoatom
Order.Ideal
PartialOrder.toPreorder
Order.Ideal.instPartialOrderIdeal
Order.Ideal.instOrderTop
β€”Order.Ideal.IsProper.ne_top
toIsProper
Order.Ideal.ext
maximal_proper
isCoatom' πŸ“–mathematicalβ€”IsCoatom
Order.Ideal
PartialOrder.toPreorder
Order.Ideal.instPartialOrderIdeal
Order.Ideal.instOrderTop
β€”isCoatom
maximal_proper πŸ“–mathematicalOrder.Ideal
Preorder.toLT
PartialOrder.toPreorder
Order.Ideal.instPartialOrderIdeal
SetLike.coe
Order.Ideal.instSetLike
Set.univ
β€”β€”
toIsProper πŸ“–mathematicalβ€”Order.Ideal.IsProperβ€”β€”

Order.Ideal.IsProper

Theorems

NameKindAssumesProvesValidatesDepends On
ne_top πŸ“–β€”β€”β€”β€”ne_univ
ne_univ πŸ“–β€”β€”β€”β€”β€”
notMem_of_compl_mem πŸ“–β€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SetLike.instMembership
Order.Ideal.instSetLike
Compl.compl
BooleanAlgebra.toCompl
β€”β€”top_notMem
Order.Ideal.sup_mem
sup_compl_eq_top
notMem_or_compl_notMem πŸ“–mathematicalβ€”Order.Ideal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
SetLike.instMembership
Order.Ideal.instSetLike
Compl.compl
BooleanAlgebra.toCompl
β€”notMem_of_compl_mem
top_notMem πŸ“–mathematicalβ€”Order.Ideal
SetLike.instMembership
Order.Ideal.instSetLike
Top.top
OrderTop.toTop
β€”ne_top
OrderTop.instIsDirectedOrder
top_nonempty
Order.Ideal.top_of_top_mem

Order.IsIdeal

Definitions

NameCategoryTheorems
toIdeal πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
IsLowerSet πŸ“–mathematicalOrder.IsIdealIsLowerSetβ€”β€”

Order.sequenceOfCofinals

Theorems

NameKindAssumesProvesValidatesDepends On
encode_mem πŸ“–mathematicalβ€”Order.Cofinal
Order.Cofinal.instMembership
Order.sequenceOfCofinals
Encodable.encode
β€”Encodable.encodek
Order.Cofinal.above_mem
monotone πŸ“–mathematicalβ€”Monotone
Nat.instPreorder
Order.sequenceOfCofinals
β€”monotone_nat_of_le_succ
le_refl
Order.Cofinal.le_above

---

← Back to Index