Documentation Verification Report

InitialSeg

πŸ“ Source: Mathlib/Order/InitialSeg.lean

Statistics

MetricCount
Definitionsantisymm, codRestrict, instCoeRelEmbedding, instFunLike, instInhabited, leAdd, ofIsEmpty, principalSumRelIso, refl, toOrderEmbedding, toPrincipalSeg, toRelEmbedding, total, trans, transPrincipal, Β«term_β‰Ίi_Β», Β«term_β‰Όi_Β», toInitialSeg, codRestrict, hasCoeInitialSeg, instCoeFunForall, instCoeOutRelEmbedding, ofElement, ofIsEmpty, pemptyToPUnit, pemptyToPunit, relIsoTrans, subrelIso, toRelEmbedding, top, trans, transInitial, transRelIso, collapse, toInitialSeg, Β«term_, Β«term_≀i_Β»
37
Theoremsacc, antisymm_symm, antisymm_toFun, codRestrict_apply, coe_coe_fn, coe_toOrderEmbedding, eq, eq_or_principal, eq_principalSeg, eq_relIso, exists_eq_iff_rel, exists_sum_relIso, ext, ext_iff, image_Iio, inj, instEmbeddingLike, instOrderHomClassLt, instRelHomClass, instSubsingletonOfIsWellOrder, isLowerSet_range, isMin_apply_iff, leAdd_apply, le_apply_iff, le_iff_le, lt_apply_iff, lt_iff_lt, map_bot, map_isMin, map_rel_iff, mem_range_of_le, mem_range_of_rel, mem_range_of_rel', monotone, refl_apply, strictMono, subsingleton_of_trichotomous_of_irrefl, toOrderEmbedding_apply, toPrincipalSeg_apply, transPrincipal_apply, trans_apply, toInitialSeg_toFun, acc, apply_subrelIso, codRestrict_apply, codRestrict_top, coe_coe_fn', coe_fn_mk, eq, exists_eq_iff_rel, ext, ext_iff, image_Iio, instIsEmptyOfIsWellOrder, instSubsingletonOfIsWellOrder, irrefl, isLowerSet_range, isMin_apply_iff, le_apply_iff, le_iff_le, lt_apply_iff, lt_iff_lt, lt_top, map_bot, map_isMin, mem_range_iff_rel, mem_range_iff_rel', mem_range_of_le, mem_range_of_rel, mem_range_of_rel_top, monotone, ofElement_apply, ofElement_toFun, ofElement_top, ofIsEmpty_top, relIsoTrans_apply, relIsoTrans_top, strictMono, subrelIso_apply, subrelIso_symm_apply, surjOn, toRelEmbedding_inj, toRelEmbedding_injective, top_eq, top_rel_top, transInitial_apply, transInitial_top, transRelIso_apply, transRelIso_top, trans_apply, trans_top, toInitialSeg_toFun, wellFounded_iff_principalSeg
93
Total130

InitialSeg

Definitions

NameCategoryTheorems
antisymm πŸ“–CompOp
2 mathmath: antisymm_symm, antisymm_toFun
codRestrict πŸ“–CompOp
1 mathmath: codRestrict_apply
instCoeRelEmbedding πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
57 mathmath: trans_apply, inj, PrincipalSeg.map_pred, instRelHomClass, Ordinal.liftInitialSeg_coe, PrincipalSeg.transInitial_apply, toOrderEmbedding_apply, acc, leAdd_apply, monotone, map_pred, map_succ, CategoryTheory.TransfiniteCompositionOfShape.iic_isoBot, isNormal, map_rel_iff, Cardinal.liftInitialSeg_toFun, Set.initialSegIic_toFun, exists_eq_iff_rel, map_bot, eq_relIso, CategoryTheory.TransfiniteCompositionOfShape.iic_isColimit, map_isMin, image_Iio, eq_principalSeg, lt_apply_iff, map_isSuccPrelimit, PrincipalSeg.coe_coe_fn', OrderIso.toInitialSeg_toFun, PrincipalSeg.transInitial_top, CategoryTheory.TransfiniteCompositionOfShape.iic_F, CategoryTheory.SmallObject.restrictionLE_map, lt_iff_lt, Ordinal.typein_apply, instOrderHomClassLt, transPrincipal_apply, apply_wCovBy_apply_iff, apply_covBy_apply_iff, map_isSuccLimit, CategoryTheory.Functor.instIsWellOrderContinuousCompFunctor, strictMono, antisymm_toFun, CategoryTheory.TransfiniteCompositionOfShape.iic_incl_app, isSuccLimit_apply_iff, le_apply_iff, eq_or_principal, ext_iff, instEmbeddingLike, RelIso.toInitialSeg_toFun, isSuccPrelimit_apply_iff, refl_apply, Set.initialSegIicIicOfLE_toFun_coe, le_iff_le, coe_toOrderEmbedding, isLowerSet_range, coe_coe_fn, eq, isMin_apply_iff
instInhabited πŸ“–CompOpβ€”
leAdd πŸ“–CompOp
1 mathmath: leAdd_apply
ofIsEmpty πŸ“–CompOpβ€”
principalSumRelIso πŸ“–CompOpβ€”
refl πŸ“–CompOp
1 mathmath: refl_apply
toOrderEmbedding πŸ“–CompOp
2 mathmath: toOrderEmbedding_apply, coe_toOrderEmbedding
toPrincipalSeg πŸ“–CompOp
1 mathmath: toPrincipalSeg_apply
toRelEmbedding πŸ“–CompOp
1 mathmath: coe_coe_fn
total πŸ“–CompOpβ€”
trans πŸ“–CompOp
1 mathmath: trans_apply
transPrincipal πŸ“–CompOp
1 mathmath: transPrincipal_apply
Β«term_β‰Ίi_Β» πŸ“–CompOpβ€”
Β«term_β‰Όi_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
acc πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
β€”mem_range_of_rel
map_rel_iff
RelEmbedding.acc
antisymm_symm πŸ“–mathematicalβ€”RelIso.symm
antisymm
β€”RelIso.coe_fn_injective
antisymm_toFun πŸ“–mathematicalβ€”DFunLike.coe
RelIso
RelIso.instFunLike
antisymm
InitialSeg
instFunLike
β€”β€”
codRestrict_apply πŸ“–mathematicalSet
Set.instMembership
DFunLike.coe
InitialSeg
instFunLike
Subrel
codRestrict
β€”β€”
coe_coe_fn πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
InitialSeg
instFunLike
β€”β€”
coe_toOrderEmbedding πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
instFunLikeOrderEmbedding
toOrderEmbedding
InitialSeg
Preorder.toLT
instFunLike
β€”β€”
eq πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
β€”instSubsingletonOfIsWellOrder
eq_or_principal πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
Set
Set.instMembership
Set.range
β€”IsWellFounded.induction
IsWellOrder.toIsWellFounded
Mathlib.Tactic.Push.not_forall_eq
trichotomous
IsWellOrder.toTrichotomous
mem_range_of_rel
Set.mem_range_self
eq_principalSeg πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
InitialSeg
instFunLike
β€”eq
PrincipalSeg.mem_range_of_rel
IsWellOrder.toIsTrans
eq_relIso πŸ“–mathematicalβ€”DFunLike.coe
RelIso
RelIso.instFunLike
InitialSeg
instFunLike
β€”eq
exists_eq_iff_rel πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
β€”mem_range_of_rel
map_rel_iff
exists_sum_relIso πŸ“–mathematicalβ€”IsWellOrder
RelIso
β€”Subrel.instIsWellOrderSubtype
IsWellOrder.toIsTrans
IsWellOrder.toTrichotomous
instIsWellOrderOfIsEmpty
PEmpty.instIsEmpty
ext πŸ“–β€”DFunLike.coe
InitialSeg
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
β€”ext
image_Iio πŸ“–mathematicalβ€”Set.image
DFunLike.coe
InitialSeg
Preorder.toLT
PartialOrder.toPreorder
instFunLike
Set.Iio
β€”OrderEmbedding.image_Iio
isLowerSet_range
inj πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
β€”β€”
instEmbeddingLike πŸ“–mathematicalβ€”EmbeddingLike
InitialSeg
instFunLike
β€”Function.Embedding.inj'
instOrderHomClassLt πŸ“–mathematicalβ€”OrderHomClass
InitialSeg
Preorder.toLT
PartialOrder.toPreorder
Preorder.toLE
instFunLike
β€”RelEmbedding.map_rel_iff
instRelHomClass πŸ“–mathematicalβ€”RelHomClass
InitialSeg
instFunLike
β€”RelEmbedding.map_rel_iff
instSubsingletonOfIsWellOrder πŸ“–mathematicalβ€”InitialSegβ€”RelEmbedding.isWellFounded
IsWellOrder.toIsWellFounded
subsingleton_of_trichotomous_of_irrefl
IsWellOrder.toTrichotomous
IsStrictOrder.toIrrefl
IsStrictTotalOrder.toIsStrictOrder
instIsStrictTotalOrderOfIsWellOrder
isLowerSet_range πŸ“–mathematicalβ€”IsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set.range
DFunLike.coe
InitialSeg
Preorder.toLT
instFunLike
β€”mem_range_of_le
isMin_apply_iff πŸ“–mathematicalβ€”IsMin
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
InitialSeg
Preorder.toLT
instFunLike
β€”StrictMono.isMin_of_apply
strictMono
mem_range_of_le
le_iff_le
leAdd_apply πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
leAdd
β€”β€”
le_apply_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
InitialSeg
Preorder.toLT
instFunLike
β€”mem_range_of_le
le_iff_le
monotone
le_iff_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
InitialSeg
Preorder.toLT
instFunLike
β€”OrderEmbedding.le_iff_le
lt_apply_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
InitialSeg
instFunLike
β€”mem_range_of_rel
lt_iff_lt
strictMono
lt_iff_lt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
InitialSeg
instFunLike
β€”OrderEmbedding.lt_iff_lt
map_bot πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
Preorder.toLT
PartialOrder.toPreorder
instFunLike
Bot.bot
OrderBot.toBot
Preorder.toLE
β€”IsMin.eq_bot
map_isMin
isMin_bot
map_isMin πŸ“–mathematicalIsMin
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
InitialSeg
Preorder.toLT
instFunLike
β€”isMin_apply_iff
map_rel_iff πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
β€”RelEmbedding.map_rel_iff'
mem_range_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
DFunLike.coe
InitialSeg
Preorder.toLT
instFunLike
Set
Set.instMembership
Set.range
β€”LE.le.eq_or_lt
mem_range_of_rel
mem_range_of_rel πŸ“–mathematicalDFunLike.coe
InitialSeg
instFunLike
Set
Set.instMembership
Set.range
β€”mem_range_of_rel'
mem_range_of_rel' πŸ“–mathematicalDFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
Set
Set.instMembership
Set.range
β€”β€”
monotone πŸ“–mathematicalβ€”Monotone
PartialOrder.toPreorder
DFunLike.coe
InitialSeg
Preorder.toLT
instFunLike
β€”OrderEmbedding.monotone
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
refl
β€”β€”
strictMono πŸ“–mathematicalβ€”StrictMono
PartialOrder.toPreorder
DFunLike.coe
InitialSeg
Preorder.toLT
instFunLike
β€”OrderEmbedding.strictMono
subsingleton_of_trichotomous_of_irrefl πŸ“–mathematicalβ€”InitialSegβ€”ext
IsWellFounded.induction
extensional_of_trichotomous_of_irrefl
exists_eq_iff_rel
toOrderEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
instFunLikeOrderEmbedding
toOrderEmbedding
InitialSeg
Preorder.toLT
instFunLike
β€”β€”
toPrincipalSeg_apply πŸ“–mathematicalDFunLike.coe
InitialSeg
instFunLike
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
toPrincipalSeg
β€”β€”
transPrincipal_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
transPrincipal
InitialSeg
instFunLike
β€”transPrincipal.eq_1
PrincipalSeg.trans_apply
eq_principalSeg
PrincipalSeg.relIsoTrans_apply
eq_relIso
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
instFunLike
trans
β€”β€”

OrderIso

Definitions

NameCategoryTheorems
toInitialSeg πŸ“–CompOp
1 mathmath: toInitialSeg_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
toInitialSeg_toFun πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
Preorder.toLT
InitialSeg.instFunLike
toInitialSeg
OrderIso
Preorder.toLE
instFunLikeOrderIso
β€”β€”

PrincipalSeg

Definitions

NameCategoryTheorems
codRestrict πŸ“–CompOp
2 mathmath: codRestrict_apply, codRestrict_top
hasCoeInitialSeg πŸ“–CompOpβ€”
instCoeFunForall πŸ“–CompOpβ€”
instCoeOutRelEmbedding πŸ“–CompOpβ€”
ofElement πŸ“–CompOp
3 mathmath: ofElement_top, ofElement_apply, ofElement_toFun
ofIsEmpty πŸ“–CompOp
1 mathmath: ofIsEmpty_top
pemptyToPUnit πŸ“–CompOpβ€”
pemptyToPunit πŸ“–CompOpβ€”
relIsoTrans πŸ“–CompOp
2 mathmath: relIsoTrans_apply, relIsoTrans_top
subrelIso πŸ“–CompOp
3 mathmath: apply_subrelIso, subrelIso_symm_apply, subrelIso_apply
toRelEmbedding πŸ“–CompOp
87 mathmath: trans_apply, Ordinal.typein_le_typein, Ordinal.mem_range_typein_iff, map_succ, Ordinal.iSup_typein_succ, isLowerSet_range, isMin_apply_iff, InitialSeg.toPrincipalSeg_apply, Set.principalSegIioIicOfLE_toRelEmbedding, mem_range_iff_rel, transInitial_apply, Ordinal.enum_symm_apply_coe, mem_range_iff_rel', isSuccLimit_apply_iff, exists_eq_iff_rel, map_bot, le_iff_le, mem_range_of_rel_top, Ordinal.typein_top, Ordinal.bfamilyOfFamily'_typein, isSuccPrelimit_apply_iff, Ordinal.liftPrincipalSeg_coe, apply_covBy_apply_iff, monotone, Ordinal.typein_lt_type, apply_wCovBy_apply_iff, Ordinal.typein_lt_typein, lt_top, apply_subrelIso, cocone_ΞΉ_app, Set.principalSegIio_toRelEmbedding, transRelIso_apply, IsWellFounded.rank_eq_typein, strictMono, InitialSeg.eq_principalSeg, CategoryTheory.Functor.IsWellOrderContinuous.nonempty_isColimit, Ordinal.type_subrel, ext_iff, Ordinal.enum_typein, trans_top, Cardinal.card_typein_lt, Cardinal.card_typein_toType_lt, Ordinal.blsub_type, coe_coe_fn', relIsoTrans_apply, cocone_pt, orderIsoIio_apply_coe, lt_apply_iff, ofElement_apply, Ordinal.bfamilyOfFamily_typein, Ordinal.typein_enum, subrelIso_symm_apply, map_isSuccPrelimit, Ordinal.typein_surj, Ordinal.typein_injective, Ordinal.typein_apply, Ordinal.ToType.mk_symm_apply_coe, InitialSeg.transPrincipal_apply, toRelEmbedding_injective, Ordinal.typein_surjOn, Ordinal.iSup_typein_limit, isNormal, Ordinal.card_typein, Ordinal.lift_typein_top, Ordinal.typein_ordinal, Ordinal.lsub_typein, surjOn, acc, Ordinal.typein_lt_self, map_isSuccLimit, eq, Ordinal.typein_one_toType, toRelEmbedding_inj, Ordinal.sup_typein_limit, CategoryTheory.SmallObject.restrictionLT_map, Ordinal.typein_le_typein', Set.principalSegIio_toFun, CategoryTheory.SmallObject.coconeOfLE_ΞΉ_app, Ordinal.typein_inj, subrelIso_apply, le_apply_iff, coe_fn_mk, map_isMin, image_Iio, Ordinal.sup_typein_succ, lt_iff_lt, ofElement_toFun
top πŸ“–CompOp
28 mathmath: mem_range_iff_rel, Ordinal.liftPrincipalSeg_top', Ordinal.enum_symm_apply_coe, transRelIso_top, mem_range_iff_rel', top_eq, Ordinal.typein_top, Set.principalSegIioIicOfLE_top, lt_top, ofIsEmpty_top, apply_subrelIso, cocone_ΞΉ_app, ofElement_top, trans_top, transInitial_top, top_rel_top, cocone_pt, orderIsoIio_apply_coe, subrelIso_symm_apply, Ordinal.lift_typein_top, surjOn, relIsoTrans_top, CategoryTheory.SmallObject.coconeOfLE_ΞΉ_app, subrelIso_apply, Ordinal.top_typein, Ordinal.liftPrincipalSeg_top, Ordinal.enum_type, Set.principalSegIio_top
trans πŸ“–CompOp
2 mathmath: trans_apply, trans_top
transInitial πŸ“–CompOp
2 mathmath: transInitial_apply, transInitial_top
transRelIso πŸ“–CompOp
2 mathmath: transRelIso_top, transRelIso_apply

Theorems

NameKindAssumesProvesValidatesDepends On
acc πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.acc
mem_range_of_rel
apply_subrelIso πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
RelIso
top
Subrel
RelIso.instFunLike
subrelIso
β€”Equiv.apply_ofInjective_symm
RelEmbedding.injective
codRestrict_apply πŸ“–mathematicalSet
Set.instMembership
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
top
Subrel
codRestrict
β€”β€”
codRestrict_top πŸ“–mathematicalSet
Set.instMembership
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
top
Subrel
codRestrict
β€”β€”
coe_coe_fn' πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
InitialSeg.instFunLike
toRelEmbedding
mem_range_of_rel
RelEmbedding
RelEmbedding.instFunLike
β€”mem_range_of_rel
coe_fn_mk πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbeddingβ€”β€”
eq πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
β€”instSubsingletonOfIsWellOrder
exists_eq_iff_rel πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.exists_eq_iff_rel
mem_range_of_rel
ext πŸ“–β€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
β€”β€”RelEmbedding.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
β€”ext
image_Iio πŸ“–mathematicalβ€”Set.image
DFunLike.coe
RelEmbedding
Preorder.toLT
PartialOrder.toPreorder
RelEmbedding.instFunLike
toRelEmbedding
Set.Iio
β€”InitialSeg.image_Iio
mem_range_of_rel
instIsTransLt
instIsEmptyOfIsWellOrder πŸ“–mathematicalβ€”IsEmpty
PrincipalSeg
β€”irrefl
instSubsingletonOfIsWellOrder πŸ“–mathematicalβ€”PrincipalSegβ€”ext
IsStrictOrder.toIrrefl
IsStrictTotalOrder.toIsStrictOrder
instIsStrictTotalOrderOfIsWellOrder
IsWellOrder.toTrichotomous
InitialSeg.eq
mem_range_of_rel
IsWellOrder.toIsTrans
irrefl πŸ“–β€”β€”β€”β€”lt_top
irrefl
IsStrictOrder.toIrrefl
IsStrictTotalOrder.toIsStrictOrder
instIsStrictTotalOrderOfIsWellOrder
InitialSeg.eq
mem_range_of_rel
IsWellOrder.toIsTrans
isLowerSet_range πŸ“–mathematicalβ€”IsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Set.range
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.isLowerSet_range
mem_range_of_rel
instIsTransLt
isMin_apply_iff πŸ“–mathematicalβ€”IsMin
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.isMin_apply_iff
mem_range_of_rel
instIsTransLt
le_apply_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.le_apply_iff
mem_range_of_rel
instIsTransLt
le_iff_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.le_iff_le
mem_range_of_rel
instIsTransLt
lt_apply_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.lt_apply_iff
mem_range_of_rel
instIsTransLt
lt_iff_lt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.lt_iff_lt
mem_range_of_rel
instIsTransLt
lt_top πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
top
β€”mem_range_iff_rel
map_bot πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Preorder.toLT
PartialOrder.toPreorder
RelEmbedding.instFunLike
toRelEmbedding
Bot.bot
OrderBot.toBot
Preorder.toLE
β€”InitialSeg.map_bot
mem_range_of_rel
instIsTransLt
map_isMin πŸ“–mathematicalIsMin
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
toRelEmbedding
β€”isMin_apply_iff
mem_range_iff_rel πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
top
β€”mem_range_iff_rel'
mem_range_iff_rel' πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
top
β€”β€”
mem_range_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
toRelEmbedding
Set
Set.instMembership
Set.range
β€”InitialSeg.mem_range_of_le
mem_range_of_rel
instIsTransLt
mem_range_of_rel πŸ“–mathematicalDFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
Set
Set.instMembership
Set.range
β€”mem_range_of_rel_top
trans
lt_top
mem_range_of_rel_top πŸ“–mathematicaltopSet
Set.instMembership
Set.range
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
β€”mem_range_iff_rel
monotone πŸ“–mathematicalβ€”Monotone
PartialOrder.toPreorder
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.monotone
mem_range_of_rel
instIsTransLt
ofElement_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Subrel
RelEmbedding.instFunLike
toRelEmbedding
ofElement
β€”β€”
ofElement_toFun πŸ“–mathematicalβ€”Function.Embedding.toFun
RelEmbedding.toEmbedding
Subrel
toRelEmbedding
ofElement
β€”β€”
ofElement_top πŸ“–mathematicalβ€”top
Subrel
ofElement
β€”β€”
ofIsEmpty_top πŸ“–mathematicalβ€”top
ofIsEmpty
β€”β€”
relIsoTrans_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
relIsoTrans
RelIso
RelIso.instFunLike
β€”β€”
relIsoTrans_top πŸ“–mathematicalβ€”top
relIsoTrans
β€”β€”
strictMono πŸ“–mathematicalβ€”StrictMono
PartialOrder.toPreorder
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
toRelEmbedding
β€”InitialSeg.strictMono
mem_range_of_rel
instIsTransLt
subrelIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
top
Subrel
RelIso.instFunLike
subrelIso
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
lt_top
β€”Equiv.ofInjective_symm_apply
RelEmbedding.injective
subrelIso_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
top
Subrel
RelIso.instFunLike
RelIso.symm
subrelIso
Equiv
Set.Elem
Set.range
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.setCongr
Set
Set.instMembership
β€”β€”
surjOn πŸ“–mathematicalβ€”Set.SurjOn
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
Set.univ
setOf
top
β€”Set.image_univ
mem_range_of_rel_top
toRelEmbedding_inj πŸ“–mathematicalβ€”toRelEmbeddingβ€”toRelEmbedding_injective
toRelEmbedding_injective πŸ“–mathematicalβ€”PrincipalSeg
RelEmbedding
toRelEmbedding
β€”extensional_of_trichotomous_of_irrefl
top_eq πŸ“–mathematicalβ€”topβ€”instSubsingletonOfIsWellOrder
top_rel_top πŸ“–mathematicalβ€”topβ€”IsWellOrder.toIsTrans
instSubsingletonOfIsWellOrder
lt_top
transInitial_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
transInitial
InitialSeg
InitialSeg.instFunLike
β€”β€”
transInitial_top πŸ“–mathematicalβ€”top
transInitial
DFunLike.coe
InitialSeg
InitialSeg.instFunLike
β€”β€”
transRelIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
transRelIso
RelIso
RelIso.instFunLike
β€”β€”
transRelIso_top πŸ“–mathematicalβ€”top
transRelIso
DFunLike.coe
RelIso
RelIso.instFunLike
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
trans
β€”β€”
trans_top πŸ“–mathematicalβ€”top
trans
DFunLike.coe
RelEmbedding
RelEmbedding.instFunLike
toRelEmbedding
β€”β€”

RelEmbedding

Definitions

NameCategoryTheorems
collapse πŸ“–CompOpβ€”

RelIso

Definitions

NameCategoryTheorems
toInitialSeg πŸ“–CompOp
1 mathmath: toInitialSeg_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
toInitialSeg_toFun πŸ“–mathematicalβ€”DFunLike.coe
InitialSeg
InitialSeg.instFunLike
toInitialSeg
RelIso
instFunLike
β€”β€”

(root)

Definitions

NameCategoryTheorems
Β«term_ πŸ“–CompOpβ€”
Β«term_≀i_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
wellFounded_iff_principalSeg πŸ“–β€”β€”β€”β€”RelHomClass.wellFounded
RelEmbedding.instRelHomClass
wellFounded_iff_wellFounded_subrel

---

← Back to Index