| Metric | Count |
DefinitionsboundedOrder, coeHom, completeLattice, dual, instCoeNonemptyInterval, instInhabited, instLE, instOrderBot, instPreorder, instUniqueOfIsEmpty, lattice, map, partialOrder, pure, recBotCoe, semilatticeSup, setLike, NonemptyInterval, coeHom, dual, instCoeSet, instDecidableEq, instDecidableLE, instDecidableLE_1, instInhabited, instMax, instMembership, instOrderTop, instPartialOrder, instPreorder, instSemilatticeSup, le, map, mapβ, pure, setLike, toDualProd, toDualProdHom, toProd | 39 |
Theoremsbot_ne_pure, canLift, coe_bot, coe_coe, coe_dual, coe_iInf, coe_iInfβ, coe_inf, coe_inj, coe_injective, coe_pure, coe_sInf, coe_sSubset_coe, coe_subset_coe, coe_top, disjoint_coe, dual_bot, dual_map, dual_pure, dual_top, exists, forall, instNontrivialOfNonempty, map_map, map_pure, mem_pure, mem_pure_self, pure_injective, pure_ne_bot, subset_coe_map, coe_coeHom, coe_def, coe_dual, coe_eq_pure, coe_nonempty, coe_pure, coe_pure_interval, coe_ssubset_coe, coe_subset_coe, coe_sup_interval, coe_top, coe_top_interval, dual_map, dual_mapβ, dual_pure, dual_top, ext, ext_iff, fst_dual, fst_le_snd, fst_sup, instCanLift, instIsEmpty, instNonempty, instNontrivial, instSubsingleton, le_def, map_fst, map_map, map_pure, map_snd, mapβ_fst, mapβ_pure, mapβ_snd, mem_coe_interval, mem_def, mem_mk, mem_pure, mem_pure_self, pure_fst, pure_injective, pure_snd, snd_dual, snd_sup, subset_coe_map, toDualProdHom_apply, toDualProd_apply, toDualProd_injective, toDualProd_mono, toDualProd_strictMono, toProd_injective | 81 |
| Total | 120 |
| Name | Category | Theorems |
boundedOrder π | CompOp | β |
coeHom π | CompOp | β |
completeLattice π | CompOp | 3 mathmath: coe_sInf, coe_iInfβ, coe_iInf
|
dual π | CompOp | 5 mathmath: coe_dual, dual_top, dual_bot, dual_pure, dual_map
|
instCoeNonemptyInterval π | CompOp | β |
instInhabited π | CompOp | β |
instLE π | CompOp | 1 mathmath: coe_subset_coe
|
instOrderBot π | CompOp | 1 mathmath: disjoint_coe
|
instPreorder π | CompOp | 1 mathmath: coe_sSubset_coe
|
instUniqueOfIsEmpty π | CompOp | β |
lattice π | CompOp | 1 mathmath: coe_inf
|
map π | CompOp | 4 mathmath: subset_coe_map, map_pure, dual_map, map_map
|
partialOrder π | CompOp | 1 mathmath: disjoint_coe
|
pure π | CompOp | 13 mathmath: mem_pure, pure_zero, add_eq_zero_iff, pure_injective, dual_pure, map_pure, NonemptyInterval.coe_eq_pure, pure_one, mul_eq_one_iff, NonemptyInterval.coe_pure_interval, length_pure, coe_pure, mem_pure_self
|
recBotCoe π | CompOp | β |
semilatticeSup π | CompOp | 1 mathmath: NonemptyInterval.coe_sup_interval
|
setLike π | CompOp | 20 mathmath: NonemptyInterval.mem_coe_interval, coe_sInf, coe_iInfβ, mem_pure, one_mem_one, coe_dual, subset_coe_map, coe_zero, coe_iInf, coe_coe, coe_top, coe_one, disjoint_coe, coe_subset_coe, coe_sSubset_coe, coe_bot, zero_mem_zero, coe_inf, coe_pure, mem_pure_self
|
| Name | Category | Theorems |
coeHom π | CompOp | 1 mathmath: coe_coeHom
|
dual π | CompOp | 7 mathmath: dual_map, coe_dual, dual_top, dual_pure, fst_dual, dual_mapβ, snd_dual
|
instCoeSet π | CompOp | β |
instDecidableEq π | CompOp | β |
instDecidableLE π | CompOp | β |
instDecidableLE_1 π | CompOp | β |
instInhabited π | CompOp | β |
instMax π | CompOp | 3 mathmath: snd_sup, fst_sup, coe_sup_interval
|
instMembership π | CompOp | 7 mathmath: mem_coe_interval, mem_mk, mem_pure, mem_pure_self, one_mem_one, mem_def, zero_mem_zero
|
instOrderTop π | CompOp | 5 mathmath: dual_top, Interval.dual_top, coe_top_interval, Interval.coe_top, coe_top
|
instPartialOrder π | CompOp | β |
instPreorder π | CompOp | 5 mathmath: toDualProd_mono, toLex_strictMono, coe_ssubset_coe, toDualProd_strictMono, toLex_mono
|
instSemilatticeSup π | CompOp | β |
le π | CompOp | 9 mathmath: dual_top, toDualProdHom_apply, Interval.dual_top, coe_subset_coe, coe_top_interval, Interval.coe_top, coe_coeHom, le_def, coe_top
|
map π | CompOp | 6 mathmath: dual_map, map_pure, map_snd, map_fst, subset_coe_map, map_map
|
mapβ π | CompOp | 4 mathmath: mapβ_snd, dual_mapβ, mapβ_fst, mapβ_pure
|
pure π | CompOp | 25 mathmath: pure_fst, pure_pow, map_pure, mem_pure, mem_pure_self, pure_mul_pure, add_eq_zero_iff, pure_sub_pure, dual_pure, pure_add_pure, pure_nsmul, pure_injective, pure_div_pure, pure_natCast, coe_eq_pure, pure_one, length_pure, pure_zero, neg_pure, pure_snd, coe_pure, coe_pure_interval, mapβ_pure, inv_pure, mul_eq_one_iff
|
setLike π | CompOp | 11 mathmath: coe_dual, coe_zero, coe_ssubset_coe, coe_subset_coe, coe_one, Interval.coe_coe, coe_coeHom, coe_def, subset_coe_map, coe_pure, coe_top
|
toDualProd π | CompOp | 5 mathmath: toDualProd_mono, toDualProdHom_apply, toDualProd_strictMono, toDualProd_apply, toDualProd_injective
|
toDualProdHom π | CompOp | 1 mathmath: toDualProdHom_apply
|
toProd π | CompOp | 49 mathmath: pure_fst, fst_add, snd_neg, snd_zero, snd_div, toProd_nsmul, snd_add, snd_inv, fst_sub, toProd_injective, mapβ_snd, toProd_one, toProd_pow, fst_dual, toProd_zero, fst_inv, coe_nonempty, mapβ_fst, snd_sub, fst_div, fst_natCast, ext_iff, map_snd, snd_one, snd_sup, fst_zero, instCanLift, fst_one, fst_nsmul, fst_neg, fst_mul, toProd_mul, coe_def, map_fst, mem_def, snd_mul, snd_natCast, toLex_lt_toLex, fst_sup, le_def, pure_snd, snd_dual, snd_pow, toDualProd_apply, snd_nsmul, fst_le_snd, fst_pow, toLex_le_toLex, toProd_add
|