Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Order/Interval/Basic.lean

Statistics

MetricCount
DefinitionsboundedOrder, coeHom, completeLattice, dual, instCoeNonemptyInterval, instInhabited, instLE, instOrderBot, instPreorder, instUniqueOfIsEmpty, lattice, map, partialOrder, pure, recBotCoe, semilatticeSup, setLike, NonemptyInterval, coeHom, dual, instCoeSet, instDecidableEq, instDecidableLE, instDecidableLE_1, instInhabited, instMax, instMembership, instOrderTop, instPartialOrder, instPreorder, instSemilatticeSup, le, map, mapβ‚‚, pure, setLike, toDualProd, toDualProdHom, toProd
39
Theoremsbot_ne_pure, canLift, coe_bot, coe_coe, coe_dual, coe_iInf, coe_iInfβ‚‚, coe_inf, coe_inj, coe_injective, coe_pure, coe_sInf, coe_sSubset_coe, coe_subset_coe, coe_top, disjoint_coe, dual_bot, dual_map, dual_pure, dual_top, exists, forall, instNontrivialOfNonempty, map_map, map_pure, mem_pure, mem_pure_self, pure_injective, pure_ne_bot, subset_coe_map, coe_coeHom, coe_def, coe_dual, coe_eq_pure, coe_nonempty, coe_pure, coe_pure_interval, coe_ssubset_coe, coe_subset_coe, coe_sup_interval, coe_top, coe_top_interval, dual_map, dual_mapβ‚‚, dual_pure, dual_top, ext, ext_iff, fst_dual, fst_le_snd, fst_sup, instCanLift, instIsEmpty, instNonempty, instNontrivial, instSubsingleton, le_def, map_fst, map_map, map_pure, map_snd, mapβ‚‚_fst, mapβ‚‚_pure, mapβ‚‚_snd, mem_coe_interval, mem_def, mem_mk, mem_pure, mem_pure_self, pure_fst, pure_injective, pure_snd, snd_dual, snd_sup, subset_coe_map, toDualProdHom_apply, toDualProd_apply, toDualProd_injective, toDualProd_mono, toDualProd_strictMono, toProd_injective
81
Total120

Interval

Definitions

NameCategoryTheorems
boundedOrder πŸ“–CompOpβ€”
coeHom πŸ“–CompOpβ€”
completeLattice πŸ“–CompOp
3 mathmath: coe_sInf, coe_iInfβ‚‚, coe_iInf
dual πŸ“–CompOp
5 mathmath: coe_dual, dual_top, dual_bot, dual_pure, dual_map
instCoeNonemptyInterval πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instLE πŸ“–CompOp
1 mathmath: coe_subset_coe
instOrderBot πŸ“–CompOp
1 mathmath: disjoint_coe
instPreorder πŸ“–CompOp
1 mathmath: coe_sSubset_coe
instUniqueOfIsEmpty πŸ“–CompOpβ€”
lattice πŸ“–CompOp
1 mathmath: coe_inf
map πŸ“–CompOp
4 mathmath: subset_coe_map, map_pure, dual_map, map_map
partialOrder πŸ“–CompOp
1 mathmath: disjoint_coe
pure πŸ“–CompOp
13 mathmath: mem_pure, pure_zero, add_eq_zero_iff, pure_injective, dual_pure, map_pure, NonemptyInterval.coe_eq_pure, pure_one, mul_eq_one_iff, NonemptyInterval.coe_pure_interval, length_pure, coe_pure, mem_pure_self
recBotCoe πŸ“–CompOpβ€”
semilatticeSup πŸ“–CompOp
1 mathmath: NonemptyInterval.coe_sup_interval
setLike πŸ“–CompOp
20 mathmath: NonemptyInterval.mem_coe_interval, coe_sInf, coe_iInfβ‚‚, mem_pure, one_mem_one, coe_dual, subset_coe_map, coe_zero, coe_iInf, coe_coe, coe_top, coe_one, disjoint_coe, coe_subset_coe, coe_sSubset_coe, coe_bot, zero_mem_zero, coe_inf, coe_pure, mem_pure_self

Theorems

NameKindAssumesProvesValidatesDepends On
bot_ne_pure πŸ“–β€”β€”β€”β€”WithBot.bot_ne_coe
canLift πŸ“–mathematicalβ€”CanLift
Interval
NonemptyInterval
WithBot.some
Bot.bot
WithBot.bot
β€”WithBot.canLift
coe_bot πŸ“–mathematicalβ€”SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
setLike
Bot.bot
WithBot.bot
NonemptyInterval
Set
Set.instEmptyCollection
β€”β€”
coe_coe πŸ“–mathematicalβ€”SetLike.coe
WithBot
NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
setLike
WithBot.some
NonemptyInterval.setLike
β€”β€”
coe_dual πŸ“–mathematicalβ€”SetLike.coe
Interval
OrderDual
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
setLike
OrderDual.instPartialOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
dual
Set.preimage
OrderDual.ofDual
β€”NonemptyInterval.coe_dual
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
setLike
iInf
CompleteSemilatticeInf.toInfSet
completeLattice
Set.iInter
β€”coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
coe_iInfβ‚‚ πŸ“–mathematicalβ€”SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
setLike
iInf
CompleteSemilatticeInf.toInfSet
completeLattice
Set.iInter
β€”coe_iInf
coe_inf πŸ“–mathematicalβ€”SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
setLike
SemilatticeInf.toMin
lattice
Set
Set.instInter
β€”bot_inf_eq
Set.empty_inter
inf_bot_eq
Set.inter_empty
Set.Icc_inter_Icc
Set.Icc_eq_empty
LE.le.trans
le_sup_left
inf_le_right
le_sup_right
inf_le_left
coe_inj πŸ“–mathematicalβ€”WithBot.some
NonemptyInterval
β€”β€”
coe_injective πŸ“–mathematicalβ€”NonemptyInterval
WithBot
WithBot.some
β€”WithBot.coe_injective
coe_pure πŸ“–mathematicalβ€”SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
setLike
pure
Set
Set.instSingletonSet
β€”Set.Icc_self
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
setLike
InfSet.sInf
CompleteSemilatticeInf.toInfSet
completeLattice
Set.iInter
Set
Set.instMembership
β€”Set.ext
instIsEmptyFalse
Set.eq_empty_of_subset_empty
Set.iInterβ‚‚_subset_of_subset
Set.Subset.rfl
Set.not_nonempty_iff_eq_empty
LE.le.trans
Set.mem_iInterβ‚‚
coe_sSubset_coe πŸ“–mathematicalβ€”Set
Set.instHasSSubset
SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
setLike
Preorder.toLT
instPreorder
β€”OrderEmbedding.lt_iff_lt
coe_subset_coe πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
setLike
instLE
β€”OrderEmbedding.le_iff_le
coe_top πŸ“–mathematicalβ€”SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
setLike
Top.top
WithBot.instTop
NonemptyInterval
OrderTop.toTop
NonemptyInterval.le
NonemptyInterval.instOrderTop
Set.univ
β€”Set.Icc_bot_top
disjoint_coe πŸ“–mathematicalβ€”Disjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Interval
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
setLike
partialOrder
instOrderBot
β€”disjoint_iff_inf_le
coe_subset_coe
coe_inf
dual_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Interval
Preorder.toLE
OrderDual
OrderDual.instLE
EquivLike.toFunLike
Equiv.instEquivLike
dual
Bot.bot
WithBot.bot
NonemptyInterval
β€”β€”
dual_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Interval
Preorder.toLE
OrderDual
OrderDual.instLE
EquivLike.toFunLike
Equiv.instEquivLike
dual
map
OrderDual.instPreorder
OrderHom
OrderHom.dual
β€”WithBot.map_comm
dual_pure πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Interval
Preorder.toLE
OrderDual
OrderDual.instLE
EquivLike.toFunLike
Equiv.instEquivLike
dual
pure
OrderDual.instPreorder
OrderDual.toDual
β€”β€”
dual_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Interval
Preorder.toLE
OrderDual
OrderDual.instLE
EquivLike.toFunLike
Equiv.instEquivLike
dual
Top.top
WithBot.instTop
NonemptyInterval
OrderTop.toTop
NonemptyInterval.le
NonemptyInterval.instOrderTop
OrderDual.instPreorder
OrderDual.instBoundedOrder
β€”β€”
exists πŸ“–mathematicalβ€”Bot.bot
Interval
WithBot.bot
NonemptyInterval
WithBot.some
β€”β€”
forall πŸ“–mathematicalβ€”Bot.bot
Interval
WithBot.bot
NonemptyInterval
WithBot.some
β€”β€”
instNontrivialOfNonempty πŸ“–mathematicalβ€”Nontrivial
Interval
Preorder.toLE
β€”Option.nontrivial
NonemptyInterval.instNonempty
map_map πŸ“–mathematicalβ€”map
OrderHom.comp
β€”β€”
map_pure πŸ“–mathematicalβ€”map
pure
DFunLike.coe
OrderHom
OrderHom.instFunLike
β€”β€”
mem_pure πŸ“–mathematicalβ€”Interval
Preorder.toLE
PartialOrder.toPreorder
SetLike.instMembership
setLike
pure
β€”SetLike.mem_coe
coe_pure
Set.mem_singleton_iff
mem_pure_self πŸ“–mathematicalβ€”Interval
Preorder.toLE
PartialOrder.toPreorder
SetLike.instMembership
setLike
pure
β€”mem_pure
pure_injective πŸ“–mathematicalβ€”Interval
Preorder.toLE
pure
β€”coe_injective
NonemptyInterval.pure_injective
pure_ne_bot πŸ“–β€”β€”β€”β€”WithBot.coe_ne_bot
subset_coe_map πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.image
DFunLike.coe
OrderHom
PartialOrder.toPreorder
OrderHom.instFunLike
SetLike.coe
Interval
Preorder.toLE
setLike
map
β€”Set.image_empty
NonemptyInterval.subset_coe_map

NonemptyInterval

Definitions

NameCategoryTheorems
coeHom πŸ“–CompOp
1 mathmath: coe_coeHom
dual πŸ“–CompOp
7 mathmath: dual_map, coe_dual, dual_top, dual_pure, fst_dual, dual_mapβ‚‚, snd_dual
instCoeSet πŸ“–CompOpβ€”
instDecidableEq πŸ“–CompOpβ€”
instDecidableLE πŸ“–CompOpβ€”
instDecidableLE_1 πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instMax πŸ“–CompOp
3 mathmath: snd_sup, fst_sup, coe_sup_interval
instMembership πŸ“–CompOp
7 mathmath: mem_coe_interval, mem_mk, mem_pure, mem_pure_self, one_mem_one, mem_def, zero_mem_zero
instOrderTop πŸ“–CompOp
5 mathmath: dual_top, Interval.dual_top, coe_top_interval, Interval.coe_top, coe_top
instPartialOrder πŸ“–CompOpβ€”
instPreorder πŸ“–CompOp
5 mathmath: toDualProd_mono, toLex_strictMono, coe_ssubset_coe, toDualProd_strictMono, toLex_mono
instSemilatticeSup πŸ“–CompOpβ€”
le πŸ“–CompOp
9 mathmath: dual_top, toDualProdHom_apply, Interval.dual_top, coe_subset_coe, coe_top_interval, Interval.coe_top, coe_coeHom, le_def, coe_top
map πŸ“–CompOp
6 mathmath: dual_map, map_pure, map_snd, map_fst, subset_coe_map, map_map
mapβ‚‚ πŸ“–CompOp
4 mathmath: mapβ‚‚_snd, dual_mapβ‚‚, mapβ‚‚_fst, mapβ‚‚_pure
pure πŸ“–CompOp
25 mathmath: pure_fst, pure_pow, map_pure, mem_pure, mem_pure_self, pure_mul_pure, add_eq_zero_iff, pure_sub_pure, dual_pure, pure_add_pure, pure_nsmul, pure_injective, pure_div_pure, pure_natCast, coe_eq_pure, pure_one, length_pure, pure_zero, neg_pure, pure_snd, coe_pure, coe_pure_interval, mapβ‚‚_pure, inv_pure, mul_eq_one_iff
setLike πŸ“–CompOp
11 mathmath: coe_dual, coe_zero, coe_ssubset_coe, coe_subset_coe, coe_one, Interval.coe_coe, coe_coeHom, coe_def, subset_coe_map, coe_pure, coe_top
toDualProd πŸ“–CompOp
5 mathmath: toDualProd_mono, toDualProdHom_apply, toDualProd_strictMono, toDualProd_apply, toDualProd_injective
toDualProdHom πŸ“–CompOp
1 mathmath: toDualProdHom_apply
toProd πŸ“–CompOp
49 mathmath: pure_fst, fst_add, snd_neg, snd_zero, snd_div, toProd_nsmul, snd_add, snd_inv, fst_sub, toProd_injective, mapβ‚‚_snd, toProd_one, toProd_pow, fst_dual, toProd_zero, fst_inv, coe_nonempty, mapβ‚‚_fst, snd_sub, fst_div, fst_natCast, ext_iff, map_snd, snd_one, snd_sup, fst_zero, instCanLift, fst_one, fst_nsmul, fst_neg, fst_mul, toProd_mul, coe_def, map_fst, mem_def, snd_mul, snd_natCast, toLex_lt_toLex, fst_sup, le_def, pure_snd, snd_dual, snd_pow, toDualProd_apply, snd_nsmul, fst_le_snd, fst_pow, toLex_le_toLex, toProd_add

Theorems

NameKindAssumesProvesValidatesDepends On
coe_coeHom πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
Set
le
Set.instLE
instFunLikeOrderEmbedding
coeHom
SetLike.coe
setLike
β€”β€”
coe_def πŸ“–mathematicalβ€”SetLike.coe
NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
setLike
Set.Icc
toProd
β€”β€”
coe_dual πŸ“–mathematicalβ€”SetLike.coe
NonemptyInterval
OrderDual
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
setLike
OrderDual.instPartialOrder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
dual
Set.preimage
OrderDual.ofDual
β€”Set.Icc_toDual
coe_eq_pure πŸ“–mathematicalβ€”WithBot.some
NonemptyInterval
Preorder.toLE
Interval.pure
pure
β€”coe_pure_interval
coe_nonempty πŸ“–mathematicalβ€”Set.Nonempty
Set.Icc
toProd
Preorder.toLE
β€”Set.nonempty_Icc
fst_le_snd
coe_pure πŸ“–mathematicalβ€”SetLike.coe
NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
setLike
pure
Set
Set.instSingletonSet
β€”Set.Icc_self
coe_pure_interval πŸ“–mathematicalβ€”WithBot.some
NonemptyInterval
Preorder.toLE
pure
Interval.pure
β€”β€”
coe_ssubset_coe πŸ“–mathematicalβ€”Set
Set.instHasSSubset
SetLike.coe
NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
setLike
Preorder.toLT
instPreorder
β€”OrderEmbedding.lt_iff_lt
coe_subset_coe πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
setLike
le
β€”OrderEmbedding.le_iff_le
coe_sup_interval πŸ“–mathematicalβ€”WithBot.some
NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instMax
WithBot
SemilatticeSup.toMax
Interval.semilatticeSup
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
setLike
Top.top
OrderTop.toTop
le
instOrderTop
Set.univ
β€”Set.Icc_bot_top
coe_top_interval πŸ“–mathematicalβ€”WithBot.some
NonemptyInterval
Preorder.toLE
Top.top
OrderTop.toTop
le
instOrderTop
WithBot
WithBot.instTop
β€”β€”
dual_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
NonemptyInterval
Preorder.toLE
OrderDual
OrderDual.instLE
EquivLike.toFunLike
Equiv.instEquivLike
dual
map
OrderDual.instPreorder
OrderHom
OrderHom.dual
β€”β€”
dual_mapβ‚‚ πŸ“–mathematicalMonotoneDFunLike.coe
Equiv
NonemptyInterval
Preorder.toLE
OrderDual
OrderDual.instLE
EquivLike.toFunLike
Equiv.instEquivLike
dual
mapβ‚‚
OrderDual.instPreorder
OrderDual.toDual
OrderDual.ofDual
Monotone.dual
β€”β€”
dual_pure πŸ“–mathematicalβ€”DFunLike.coe
Equiv
NonemptyInterval
Preorder.toLE
OrderDual
OrderDual.instLE
EquivLike.toFunLike
Equiv.instEquivLike
dual
pure
OrderDual.instPreorder
OrderDual.toDual
β€”β€”
dual_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
NonemptyInterval
Preorder.toLE
OrderDual
OrderDual.instLE
EquivLike.toFunLike
Equiv.instEquivLike
dual
Top.top
OrderTop.toTop
le
instOrderTop
OrderDual.instPreorder
OrderDual.instBoundedOrder
β€”β€”
ext πŸ“–β€”toProdβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toProdβ€”ext
fst_dual πŸ“–mathematicalβ€”OrderDual
toProd
OrderDual.instLE
DFunLike.coe
Equiv
NonemptyInterval
EquivLike.toFunLike
Equiv.instEquivLike
dual
OrderDual.toDual
β€”β€”
fst_le_snd πŸ“–mathematicalβ€”toProdβ€”β€”
fst_sup πŸ“–mathematicalβ€”toProd
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
NonemptyInterval
instMax
SemilatticeInf.toMin
β€”β€”
instCanLift πŸ“–mathematicalβ€”CanLift
NonemptyInterval
toProd
β€”β€”
instIsEmpty πŸ“–mathematicalβ€”IsEmpty
NonemptyInterval
β€”β€”
instNonempty πŸ“–mathematicalβ€”NonemptyInterval
Preorder.toLE
β€”Nonempty.map
instNontrivial πŸ“–mathematicalβ€”Nontrivial
NonemptyInterval
Preorder.toLE
β€”Function.Injective.nontrivial
pure_injective
instSubsingleton πŸ“–mathematicalβ€”NonemptyIntervalβ€”Function.Injective.subsingleton
toDualProd_injective
OrderDual.instSubsingleton
le_def πŸ“–mathematicalβ€”NonemptyInterval
le
toProd
β€”β€”
map_fst πŸ“–mathematicalβ€”toProd
Preorder.toLE
map
DFunLike.coe
OrderHom
OrderHom.instFunLike
β€”β€”
map_map πŸ“–mathematicalβ€”map
OrderHom.comp
β€”β€”
map_pure πŸ“–mathematicalβ€”map
pure
DFunLike.coe
OrderHom
OrderHom.instFunLike
β€”β€”
map_snd πŸ“–mathematicalβ€”toProd
Preorder.toLE
map
DFunLike.coe
OrderHom
OrderHom.instFunLike
β€”β€”
mapβ‚‚_fst πŸ“–mathematicalMonotonetoProd
Preorder.toLE
mapβ‚‚
β€”β€”
mapβ‚‚_pure πŸ“–mathematicalMonotonemapβ‚‚
pure
β€”β€”
mapβ‚‚_snd πŸ“–mathematicalMonotonetoProd
Preorder.toLE
mapβ‚‚
β€”β€”
mem_coe_interval πŸ“–mathematicalβ€”WithBot
NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
SetLike.instMembership
Interval.setLike
WithBot.some
instMembership
β€”β€”
mem_def πŸ“–mathematicalβ€”NonemptyInterval
Preorder.toLE
instMembership
toProd
β€”β€”
mem_mk πŸ“–mathematicalPreorder.toLENonemptyInterval
instMembership
β€”β€”
mem_pure πŸ“–mathematicalβ€”NonemptyInterval
Preorder.toLE
PartialOrder.toPreorder
instMembership
pure
β€”SetLike.mem_coe
coe_pure
Set.mem_singleton_iff
mem_pure_self πŸ“–mathematicalβ€”NonemptyInterval
Preorder.toLE
instMembership
pure
β€”le_rfl
pure_fst πŸ“–mathematicalβ€”toProd
Preorder.toLE
pure
β€”β€”
pure_injective πŸ“–mathematicalβ€”NonemptyInterval
Preorder.toLE
pure
β€”β€”
pure_snd πŸ“–mathematicalβ€”toProd
Preorder.toLE
pure
β€”β€”
snd_dual πŸ“–mathematicalβ€”OrderDual
toProd
OrderDual.instLE
DFunLike.coe
Equiv
NonemptyInterval
EquivLike.toFunLike
Equiv.instEquivLike
dual
OrderDual.toDual
β€”β€”
snd_sup πŸ“–mathematicalβ€”toProd
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
NonemptyInterval
instMax
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”β€”
subset_coe_map πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.image
DFunLike.coe
OrderHom
PartialOrder.toPreorder
OrderHom.instFunLike
SetLike.coe
NonemptyInterval
Preorder.toLE
setLike
map
β€”Set.image_subset_iff
OrderHom.mono
toDualProdHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
NonemptyInterval
OrderDual
le
Prod.instLE_mathlib
OrderDual.instLE
RelEmbedding.instFunLike
toDualProdHom
toDualProd
β€”β€”
toDualProd_apply πŸ“–mathematicalβ€”toDualProd
OrderDual
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
toProd
β€”β€”
toDualProd_injective πŸ“–mathematicalβ€”NonemptyInterval
OrderDual
toDualProd
β€”toProd_injective
toDualProd_mono πŸ“–mathematicalβ€”Monotone
NonemptyInterval
Preorder.toLE
OrderDual
instPreorder
Prod.instPreorder
OrderDual.instPreorder
toDualProd
β€”β€”
toDualProd_strictMono πŸ“–mathematicalβ€”StrictMono
NonemptyInterval
Preorder.toLE
OrderDual
instPreorder
Prod.instPreorder
OrderDual.instPreorder
toDualProd
β€”β€”
toProd_injective πŸ“–mathematicalβ€”NonemptyInterval
toProd
β€”β€”

(root)

Definitions

NameCategoryTheorems
NonemptyInterval πŸ“–CompData
132 mathmath: NonemptyInterval.toDualProd_mono, NonemptyInterval.dual_map, NonemptyInterval.length_zero, NonemptyInterval.pure_pow, NonemptyInterval.mem_coe_interval, NonemptyInterval.coe_inv_interval, NonemptyInterval.fst_add, NonemptyInterval.snd_neg, NonemptyInterval.instIsEmpty, Interval.div_bot, NonemptyInterval.coe_neg_interval, NonemptyInterval.snd_zero, NonemptyInterval.mem_mk, NonemptyInterval.mem_pure, NonemptyInterval.snd_div, NonemptyInterval.mem_pure_self, NonemptyInterval.pure_mul_pure, NonemptyInterval.toProd_nsmul, Interval.bot_add, NonemptyInterval.add_eq_zero_iff, NonemptyInterval.toLex_strictMono, NonemptyInterval.coe_dual, NonemptyInterval.coe_sub_interval, NonemptyInterval.coe_one_interval, NonemptyInterval.snd_add, NonemptyInterval.snd_inv, NonemptyInterval.fst_sub, NonemptyInterval.instSubsingleton, NonemptyInterval.dual_top, NonemptyInterval.toProd_injective, NonemptyInterval.pure_sub_pure, NonemptyInterval.coe_nsmul_interval, NonemptyInterval.toDualProdHom_apply, NonemptyInterval.toProd_one, NonemptyInterval.toProd_pow, NonemptyInterval.coe_pow_interval, NonemptyInterval.coe_add_interval, NonemptyInterval.dual_pure, Interval.one_mem_one, NonemptyInterval.fst_dual, NonemptyInterval.coe_div_interval, NonemptyInterval.coe_zero, Interval.dual_top, Interval.bot_mul, Interval.coe_zero, NonemptyInterval.toProd_zero, NonemptyInterval.fst_inv, Interval.pure_zero, NonemptyInterval.pure_add_pure, NonemptyInterval.pure_nsmul, NonemptyInterval.coe_ssubset_coe, NonemptyInterval.toDualProd_strictMono, Interval.add_eq_zero_iff, NonemptyInterval.coe_subset_coe, Interval.coe_injective, Interval.dual_bot, NonemptyInterval.dual_mapβ‚‚, NonemptyInterval.coe_one, Interval.canLift, NonemptyInterval.snd_sub, NonemptyInterval.fst_div, NonemptyInterval.coe_top_interval, NonemptyInterval.fst_natCast, NonemptyInterval.one_mem_one, Interval.neg_bot, Interval.coe_coe, Interval.sub_bot, Interval.add_bot, NonemptyInterval.snd_one, NonemptyInterval.snd_sup, Interval.coe_top, Interval.coe_one, Interval.mul_bot, NonemptyInterval.length_add, NonemptyInterval.fst_zero, Interval.forall, Interval.bot_div, NonemptyInterval.pure_injective, Interval.coe_inj, NonemptyInterval.instCanLift, NonemptyInterval.pure_div_pure, NonemptyInterval.fst_one, NonemptyInterval.fst_nsmul, NonemptyInterval.length_sum, NonemptyInterval.fst_neg, NonemptyInterval.fst_mul, Interval.length_zero, NonemptyInterval.toProd_mul, NonemptyInterval.coe_coeHom, NonemptyInterval.coe_def, NonemptyInterval.length_sub, Interval.coe_bot, NonemptyInterval.coe_zero_interval, NonemptyInterval.pure_natCast, NonemptyInterval.mem_def, NonemptyInterval.zero_mem_zero, Interval.inv_bot, NonemptyInterval.coe_eq_pure, NonemptyInterval.pure_one, NonemptyInterval.instNonempty, Interval.bot_sub, Interval.pure_one, NonemptyInterval.subset_coe_map, NonemptyInterval.snd_mul, Interval.zero_mem_zero, NonemptyInterval.toLex_mono, NonemptyInterval.pure_zero, NonemptyInterval.snd_natCast, Interval.mul_eq_one_iff, NonemptyInterval.toLex_lt_toLex, NonemptyInterval.fst_sup, NonemptyInterval.neg_pure, NonemptyInterval.le_def, NonemptyInterval.coe_sup_interval, Interval.exists, NonemptyInterval.coe_pure, Interval.bot_pow, NonemptyInterval.coe_pure_interval, NonemptyInterval.snd_dual, NonemptyInterval.snd_pow, Interval.bot_nsmul, NonemptyInterval.toDualProd_injective, NonemptyInterval.snd_nsmul, NonemptyInterval.coe_top, NonemptyInterval.coe_mul_interval, NonemptyInterval.instNontrivial, NonemptyInterval.inv_pure, NonemptyInterval.fst_pow, NonemptyInterval.toLex_le_toLex, NonemptyInterval.length_neg, NonemptyInterval.mul_eq_one_iff, NonemptyInterval.toProd_add

---

← Back to Index