Documentation Verification Report

Gaps

πŸ“ Source: Mathlib/Order/Interval/Finset/Gaps.lean

Statistics

MetricCount
DefinitionsintervalGapsWithin, fst, snd
3
TheoremsintervalGapsWithin_fst_le_snd, intervalGapsWithin_fst_of_lt_lt, intervalGapsWithin_injOn, intervalGapsWithin_last_snd, intervalGapsWithin_le_fst, intervalGapsWithin_mapsTo, intervalGapsWithin_pairwiseDisjoint_Ioc, intervalGapsWithin_snd_le, intervalGapsWithin_snd_of_lt, intervalGapsWithin_succ_fst_of_lt, intervalGapsWithin_surjOn, intervalGapsWithin_zero_fst
12
Total15

Finset

Definitions

NameCategoryTheorems
intervalGapsWithin πŸ“–CompOp
18 mathmath: sum_eq_sum_range_intervalGapsWithin, prod_intervalGapsWithin_mul_prod_eq_div, intervalGapsWithin_le_fst, intervalGapsWithin_fst_le_snd, prod_intervalGapsWithin_eq_div_div_prod, intervalGapsWithin_surjOn, intervalGapsWithin_injOn, prod_eq_prod_range_intervalGapsWithin, intervalGapsWithin_pairwiseDisjoint_Ioc, intervalGapsWithin_snd_of_lt, intervalGapsWithin_succ_fst_of_lt, intervalGapsWithin_snd_le, sum_intervalGapsWithin_eq_sub_sub_sum, sum_intervalGapsWithin_add_sum_eq_sub, intervalGapsWithin_fst_of_lt_lt, intervalGapsWithin_last_snd, intervalGapsWithin_mapsTo, intervalGapsWithin_zero_fst

Theorems

NameKindAssumesProvesValidatesDepends On
intervalGapsWithin_fst_le_snd πŸ“–mathematicalcard
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Finset
instSetLike
Set.Icc
intervalGapsWithinβ€”intervalGapsWithin.congr_simp
Fin.natCast_zero
intervalGapsWithin_zero_fst
intervalGapsWithin_last_snd
intervalGapsWithin_mapsTo
Fin.natCast_eq_last
intervalGapsWithin_fst_of_lt_lt
intervalGapsWithin_snd_of_lt
orderEmbOfFin_mem
RelEmbedding.injective
Mathlib.Tactic.Contrapose.contrapose₁
Prod.Lex.le_iff'
OrderEmbedding.monotone
LT.lt.le
intervalGapsWithin_fst_of_lt_lt πŸ“–mathematicalcardintervalGapsWithin
DFunLike.coe
OrderEmbedding
Lex
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Prod.Lex.instLinearOrder
instFunLikeOrderEmbedding
orderEmbOfFin
β€”intervalGapsWithin_succ_fst_of_lt
intervalGapsWithin_injOn πŸ“–mathematicalcardSet.InjOn
intervalGapsWithin
Set.Iio
Nat.instPreorder
β€”Set.mem_Iio
intervalGapsWithin_snd_of_lt
intervalGapsWithin_succ_fst_of_lt
intervalGapsWithin_last_snd πŸ“–mathematicalcardintervalGapsWithinβ€”β€”
intervalGapsWithin_le_fst πŸ“–mathematicalcard
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
intervalGapsWithinβ€”intervalGapsWithin.congr_simp
Fin.natCast_zero
intervalGapsWithin_zero_fst
intervalGapsWithin_mapsTo
intervalGapsWithin_mapsTo πŸ“–mathematicalcardSet.MapsTo
intervalGapsWithin
Set.Iio
Nat.instPreorder
SetLike.coe
Finset
instSetLike
β€”Set.mem_Iio
intervalGapsWithin_snd_of_lt
intervalGapsWithin_succ_fst_of_lt
orderEmbOfFin_mem
intervalGapsWithin_pairwiseDisjoint_Ioc πŸ“–mathematicalcard
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Iio
Nat.instPreorder
Set.Ioc
intervalGapsWithin
β€”Function.onFun.eq_1
Set.disjoint_iff_inter_eq_empty
intervalGapsWithin_mapsTo
le_imp_le_of_le_of_le
le_refl
intervalGapsWithin.congr_simp
intervalGapsWithin_snd_of_lt
Prod.Lex.le_iff'
OrderEmbedding.monotone
Set.mem_Iio
Disjoint.symm
intervalGapsWithin_snd_le πŸ“–mathematicalcard
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
intervalGapsWithinβ€”intervalGapsWithin.congr_simp
Fin.natCast_eq_last
intervalGapsWithin_last_snd
intervalGapsWithin_mapsTo
intervalGapsWithin_snd_of_lt πŸ“–mathematicalcardintervalGapsWithin
DFunLike.coe
OrderEmbedding
Lex
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Prod.Lex.instLinearOrder
instFunLikeOrderEmbedding
orderEmbOfFin
β€”β€”
intervalGapsWithin_succ_fst_of_lt πŸ“–mathematicalcardintervalGapsWithin
DFunLike.coe
OrderEmbedding
Lex
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Prod.Lex.instLinearOrder
instFunLikeOrderEmbedding
orderEmbOfFin
β€”β€”
intervalGapsWithin_surjOn πŸ“–mathematicalcardSet.SurjOn
intervalGapsWithin
Set.Iio
Nat.instPreorder
SetLike.coe
Finset
instSetLike
β€”range_orderEmbOfFin
Fin.prop
intervalGapsWithin_snd_of_lt
intervalGapsWithin_succ_fst_of_lt
intervalGapsWithin_zero_fst πŸ“–mathematicalcardintervalGapsWithinβ€”β€”

Finset.intervalGapsWithin

Definitions

NameCategoryTheorems
fst πŸ“–CompOpβ€”
snd πŸ“–CompOpβ€”

---

← Back to Index